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INTRODUCTION

In this technical bulletin we develop procedures for fitting Coale’s model nuptiality schedule to
World Fertility Survey data, using the method of maximum likelihood. There are several
reasons why one may be interested in fitting a model to WFS nuptiality data.

Firstly, the model may be used as a tool for smoothing the data or as an aid in assessing the
quality of data. For example, fitting the model to distributions of marital status by age such as
those obtained from WES household surveys leads to smooth estimates of the proportion ever
married by single years of age and helps identify ages where reporting is deficient.

Secondly, the model permits a succinct description of the marriage process in terms of three
simple parameters, namely, the proportion of women in a cohort who will eventually marry and
the mean and standard deviation of age at marriage for those who marry. If the model fits
the data then these three parameters effectively capture all the information in the observed
marriage schedules. In other words, the model permits parsimonious description without loss of
information,

Thirdly, the model permits extrapolation from the incomplete experience reported at a cross-
sectional survey by cohorts of women who are still undergoing the marriage process. This is
perhaps the most important application in the context of distributions of age at marriage such
as those obtained from WFES individual surveys, which are truncated or censored at the inter-
view. Fitting the model to these data permits estimation of the proportions who will eventually
marry as well as the mean and standard deviation of age at marriage, even for cohorts where
only half the women who will ever marry have done so by the date of the survey.

Fourthly, the model itself is of interest to students of nuptiality, as it describes a complex
process in terms of relatively simple mechanisms which have a behavioural basis or interpre-
tation. The development of estimation procedures for WFS data permits validation of the
model on a much more extensive data base than has heretofore been possible.

The procedures herein developed have been designed to estimate the parameters of the model,
including mean age at marriage, making full use of the information available whilst properly
taking into account the truncated or censored nature of the data. As such they represent a more
refined analytic tool than the ad hoc procedures used to handle truncation in the estimation of
mean age at marriage in WFS first country reports.

Finally, an importdnt feature of the maximum likelihood approach adopted here is that it leads
not only to estimates of the parameters of the model, but also to large sample estimates of the
standard errors of the estimates, and large sample tests of the goodness of fit of the model.

This bulletin is organized in eight sections following this introduction.

In Section 1 we describe Coale’s model nuptiality schedule, introduce its standard density and
cumulative distribution functions, propose a reparameterization of the model in terms of its
mean and standard deviation, and relate the model to a gamma distribution.

In Section 2 we consider estimating the parameters of the model for a synthetic cohort using
data on marital status by age, of the type collected in the WFS household schedule. The basic
features of the maximum likelihood procedures are described and illustrated, including esti-
mation, standard errors, goodness of fit and robustness.

In Section 3 we discuss estimation of two of the parameters of the model for real cohorts, using
data on age at marriage from a sample of ever-married women, of the type collected in the WFS
individual interview. In addition to extending the estimation and goodness of fit procedures to
this type of situation we introduce a test for homogeneity of cohorts.

In Section 4 we consider estimating all three parameters of the model for a real cohort by com-
bining individual data on age at marriage with household data on marital status by age. We



propose two alternative procedures termed two-stage estimation and full information esti-
mation.

In Section 5 we describe procedures appropriate for cases where data on marital status and age
at marriage (of those ever-married) are available for the same sample of women, as it is the case
in WES surveys where all women in the reproductive ages, irrespective of marital status, are
eligible for the individual interview.

In Section 6 we turn our attention to estimation using ungrouped or continuous data from ever-
married or all-women sample, and discuss both parametric and non-parametric estimation of the
nuptiality schedule from a truncated or censored sample.

In Section 7 we show that the model nuptiality schedule can also adequately replicate observed
first birth schedules. This application may be used as either a diagnostic device for smoothing
data or as a means of inferring the schedule of entry into cohabitation.

In Section 8 we refer briefly to the numerical procedures used to calculate the estimates and
make some remarks concerning the evaluation of the cumulative distribution function. Refer-
ence is made to a computer package specially suited to handle the different types of data
available from the WFS,

Throughout the paper the recommended procedures are illustrated using data from the
Colombian National Fertility Survey of 1976, conducted as part of the WFS. The data are used
not only to illustrate the maximum likelihood procedures, but also to compare methods of
estimation, assess the robustness of the estimates, and compare results using grouped and un-
grouped data.



1. COALE’S MODEL NUPTIALITY SCHEDULE

1.1 The Age Pattern of Marriage

Coale (1971) has presented empirical evidence to the effect that the distribution of age at first
marriage in a female cohort takes the same basic form in a wide variety of populations, differing
only in the location and scale of age at marriage and the proportion of the cohort eventually
marrying.

Figure 1.1, reproduced from Coale (1971), illustrates vividly the existence of this common
pattern. Panel A shows proportions ever-married by age for five different populations, and
depicts clearly differences in location, scale and proportion ultimately marrying. Panel B shows
the same data adjusted to give a proportion eventually married equal to one, and plotted with
age standardised for location and scale, and reveals a remarkable uniformity in the age pattern
of marriage.

The same type of uniformity is noted in observed schedules of first marriage frequencies, as
illustrated in Figure 1.2, also reproduced from Coale (1971). Panel A shows first marriage fre-
quencies for two cohorts and two cross-sections, differing in location and scale. Panel B shows
the same data adjusted for location and scale, and reveals a common structure.

To represent this underlying structure, a “‘standard” schedule was constructed by making minor
adjustments to the schedule of first marriage frequencies recorded in Sweden from 1865 to
1869. The standard frequencies, as well as the corresponding proportions ever-married by age,
were tabulated by Coale (1971) in intervals of one-tenth of a year.

The question naturally arose as to whether this underlying pattern could be represented by a
mathematical function. Trial and error lead Coale (1971) to find a closed-form expression for
the risk of first marriage. Later, however, Coale and McNeil (1972) found an analytic expres-
sion for the frequency of first marriages that fits the Swedish standard — and hence many
observed nuptiality schedules — remarkably well, The mathematical model will be introduced
below.

1.2 Analytic Formulation of the Model

At this point we must introduce some notation. Let f(a) represent the frequency of first
marriages at exact age a, so that a proportion f(a)da of a cohort marries between exact ages a
and a+da.

Our development of the model proceeds in three stages. The function f(a) may be related to the
distribution of age at first marriage by writing

f(a) = c g(a), (1.1)
where c is the proportion of the cohort eventually marrying, and g(a) is the probability density

function of age at first marriage among those who marry, so that a proportion g(a)da of those
who eventually marry do so between exact ages a and a+da.

The function g(a) may in turn be related to a standard schedule of age at first marriage, by
writing
g(a)= L & & (1.2)

where a_is a location parameter which may be interpreted as the age at which a consequential
number of marriages first occur, k is a scale parameter which may be interpreted as the rate at
which marriage occurs (relative to the standard), and g (z) is the standard schedule derived from
Swedish data by Coale (1971).

Finally, the function gg(z) was found by Coale and McNeil (1972) to be very well approximated
by the following probability density function:
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FIGURE 1.1: Proportions ever-married by age, selected countries.
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FIGURE 1.2: First marriage rates by age for selected countries.
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g4(7) = 0.1946 Exp {-0.174(2-6.06)-Exp [-0.288(2-6.06)] } (1.3)

The function g(a) may now be written in full by substituting (a-a )/k for z and dividing through
by k at (1.3). Multiplication of the result by c gives an analytlc expression for f(a). Thus, we
have expressed f(a) in terms of a standard schedule (1.3) by using three parameters: ao, k and c.

A lucid account of developments leading to this analytic form for the standard schedule of first
marriages may be found in Coale (1977), as well as the original and more technical paper by
Coale and McNeil (1972).

The statistically inclined reader may be interested to know that the density at (1.3) represents
the convolution of an infinite number of mean-corrected exponential random variables. This
density, however, is in turn very closely approximated by the convolution of a normally dis-
tributed random variable and three exponential delays. Coale and McNeil (1972) have inter-
preted these components in Western cultures as representing the age of entry into the marriage
market and the delays involved in finding a suitable partner, getting engaged, and getting
married.

The conditional density given at (1.3) has mean and variance as follows:
E(z) = 11.36, and Var(z) = 43.34. (1.4)

Changing variables from z to a=ao+kz gives, for any values of a; and k, the mean and variance
of age at marriage (for those who marry) as

E(A)=a, + 1136k,

and (1.5)
Var(A) = 4334 2.

It now remains only to define the proportion ever-married by exact age x among all women in a
cohort as:

X
F(x) = [ f(a)da. (1.6)

This function may be written as:
F(x) = ¢ G(x), 1.7

where G(x) is the cumulative distribution function of age at marriage for those who eventually
marry,

X
G(x) = [ g(a)da. (1.8)
This function may, in turn, be expressed in terms of the standard schedule by writing:
X-3,
G(x) = Gg (T)’ (1.9)

where Gg(z) is the standard cumulative distribution function of age at first marriage obtained
integrating (1.3), that is:

z
Gy(z) =/ ge(t)dt. (1.10)
The question of evaluating this integral will be considered in Section 1.4 below.

1.3 A Standard with Mean 0 and Variance 1

The choice of a_ and k as the location and scale parameters of the model is certainly valid, but
somewhat arbitrary. One objection that may be raised is that these parameters are not easily
interpretable, and thus do not provide a convenient basis for comparisons across cohorts or
populations.

11



The location parameter a  is not the minimum age at marriage, but rather the age at which a
“consequential” number of marriages first occurs. More precisely, the model implies that about
one per cent of the women who will eventually marry have done so by age a,, so that a, is
close to the first percentile of the distribution.

The scale parameter k is literally the number of years in the standard schedule into which one
year of marriage in the actual population may be packed, and therefore represents the rate of
marriage relative to the Swedish standard. For example, in the standard about five per cent of
the women who will eventually marry have done so by the end of the first age of marriage. If in
an actual population k=2 it would mean that it takes two years for the same five per cent to
marry, implying that the pace of marriage is slower than in the Swedish population of 1865-
1869.

On the other hand, we have found that the statistic of greatest interest in fitting the model is
usually the mean age at marriage, so that in actual practice one would translate a, and k into a
mean and, say, a standard deviation, using (1.5). It thus seems more natural and convenient to

reparameterize the model in terms of the mean and standard deviation rather than a, and k.

A new standard with mean O and variance 1 (analogous to the standard normal distribution),
may be obtained from the existing standard (1.3) using (1.5) to find the values of ao and k
that give the desired mean and variance. The required values are:

a, = -11.36/6.583 = -1.726,
and (1.11)
k = 1/6.583 = 0.152.

Substituting (a-a,)/k for z and dividing through by k at (1.3), using these values of a and k
gives, as the new standard density function:

g,(z) = 1.2813 Exp {-1.145(2+0.805)-Exp [-1.896(z+0.805)] } (1.12)

The probability density function of age at first marriage, g(a), may be related to this new
standard by writing

ga) = (—1— g (¥, (1.13)

where u is the mean age at marriage and o is the standard deviation of age at marriage, among
those who marry.

Similarly, the cumulative distribution function of age at first marriage G(x) may be written as
Glx) = G, (*F), (1.14)
where G, is the new standard cumulative distribution function
Go(2) = f, g,(t)dt. (1.15)
We now consider the question of evaluating this integral.

1.4 Relationship of the Model to a Gamma Distribution

Unfortunately no closed form expression exists for the integrals given at (1.10) and (1.15)
representing standard cumulative distributions of age at first marriage. These distributions, how-
ever, can be related quite easily to an incomplete gamma function, a result which greatly
simplifies calculations, as simple algorithms exist for the calculation of the latter.

The density function used by Coale and McNeil (1972), may be written in general form as:

g(a) = TCZ‘/")GExp{-a(a-ﬁ)-Exp[-?\(a-H)]}, (1.16)

12



where T' denotes the gamma function and a, A, § are three parameters. The mean of this distri-
bution is #=8-1 ¥(a/\), where Y=I" /T is the digamma function.

If we set a=0.174, A=0.288 and 0=6.06, with the constant A\/T'(a/\) resulting 0.1946 and the
mean p=11.36, we obtain the Swedish standard given at (1.3). Alternatively, setting a=1.145,
2=1.896 and 6=0.805, with the resulting constant A/T*(a/)) equal to 1.2813, we obtain the new
standard with mean O and variance 1 given at (1.12).

More generally, setting a=1.145/0, A\=1.896/0 and 6=u-0.8050, we obtain a distribution with
mean g and variance 2. In all these formulations the ratio a/X is constant at 0.604 so that the

model has only two parameters. (The question of whether the model may be generalised by
allowing a/X to be arbitrary may well deserve further research.)

The cumulative distribution function corresponding to (1.16) is given by the integral
G(x) = | ga)da = | -2 Expf-a(a-0)B o)1}
| () =/ s@da = | 5y Bxpla(a0)Exp(Aa- ) }da. (1.17)
Consider the change of variables
y = eMa0), 56 thata = 0 - )—1; logy. (1.18)

Then

a
a.] -
X Y

3

G(x) = dy, (1.19)

@) Lagedy

which, recalling the definition of the gamma function, may be written as (Coale and McNeil,
1972, p.748)

A Gy

- 1
GO = ey S vy e dy, (1.20)
0
or more simply, as
G(x) = 1 - I[ e Nx0), %-1 1 (1.21)
where I(w,p) denotes the incomplete gamma function
1 w -
10v.P) = Fegy yPeYdy. (1.22)
P o

Thus, for any values of the parameters a, A and 8 (or ¢ and 0), the cumulative distribution
funct1on G(a) may be evaluated in terms of an incomplete gamma function with parameter
7\—0 604, In particular, the result may be used to evaluate the new standard cumulative distribut-
ion function as

G,(2) = 1 - I [¢1:896(z+0.805). ¢ 396). (1.23)

Approximations to the incomplete gamma function will be discussed in Section 8.2.

This formulation shows incidentally, that age at marriage a (with parameters a, A, 8 or ¢ and o)
is distributed as 6~X log y where y has a standard gamma distribution with parameter% =0.604,
that is, age at marriage is distributed as a linear function of the logarithm of a standard gamma
random variable.

A table of values of the new standard cumulative distribution function Ggy(z) is given in
Appendix Table 5.

13



2. ESTIMATION FROM HOUSEHOLD DATA

2.1 The Data-Notation

The household schedule used in the WES collects data on age at the interview and current
marital status for all females between the ages of 15 and 49 or a similar age range. These data
are usually tabulated by single years of age.

Table 2.1 shows such a set of data from the household interview of the Colombian National
Fertility Survey of 1976, with a total of 12905 usual female residents between the ages of 15
and 49, of whom 7361 had been or were married legally or consensually,

We now consider fitting a model nuptiality schedule to this type of data, treating the different
ages as representing a synthetic cohort.

The resulting parameter estimates will, of course, not apply to the experience of a real cohort
unless nuptiality has been unchanging in the past. Our experience indicates, however, that the
resulting fitted model may be used to smooth the data even in cases of changing nuptiality.

Let us introduce the following notation with reference to Table 2.1:

X = age at interview in completed years, ranging from x  to X, , in our example 15 to 49
(Column 1)

m, = number of ever-married women age x completed years at the interview (Column 2)

sy, =number of single (never married) women age X completed years at the interview (Column
3)
n, = m.ts, = total number of women age x completed years at the interview (Column 4).

In fitting the model we assume that age x completed years represents x+% exact years.

2.2 Maximum Likelihood Estimation

We shall treat the number m, married by age x completed years as having a binominal distri-
bution with parameters ny and II, — where I, denotes the probability of being ever-married
by age x completed years — independently for each age.

The likelihood of the data is then a product binominal distribution. The logarithm of the likeli-
hood function, except for a constant representing the binominal coefficients, is

X
log L = §ix{mx log I, +s, log (1-I)}. 2.D)
0

The unrestricted maximum likelihood estimators (m.l.e.’s) of the parameters I, obtained by
maximising (2.1}, are simply the proportions ever-married in the sample,

p, = — 2.2)

These values are shown in Table 2.1 (Column 5) and present some obvious irregularities. Par-
ticularly noticeable are the low values at ages 35, 40 and 45, suggesting that either ever-married
women are less likely to heap their ages, or that women who heap ages under-report marriage.
One objective in fitting a model may be to smooth these proportions,

Under Coale’s model nuptiality schedule the probability of being married by age x, assuming
that women age x completed years are on the average x+% exact years, is

M, = F(x+4), (2.3)

14



TABLE 2.1: Observed and fitted proportions ever-married by age.
Colombia household survey (1976).

Number of Women Proportion Ever-married
Ever Never

Age Married Married Total Observed Fitted Difference
1 2 (3) ) %) (6 (7)
X m, Sy ny Px ﬁx Px'ﬁx
15 16. 656. 672. .024 .026 —.002
16 48, 662. 710. .068 .063 .004
17 71. 584. 655. .108 121 —.013
18 120. 559. 679. 177 195 —.019
19 176. 398. 574. .307 278 .029
20 255. 379, 634. 402 .361 042
21 198. 270. 468. 423 439 —.016
22 267. 259. 526. .508 .509 —.002
23 287. 197. 484, 593 571 .022
24 275. 185. 460. .598 623 —.025
25 340. 197. 537. .633 .666 —.033
26 292. 124, 416, 702 702 —.001
27 274. 101. 375. 731 7132 —.001
28 303. 103. 406. 746 756 —-.010
29 242. 69. 311. 778 776 .002
30 332. 96. 428. 776 792 —.016
31 145. 34, 179. .810 .804 006
32 261, 54, 315. .829 815 .014
33 215, 29, 244, .881 823 .058
34 201. 32. 233. .863 830 033
35 344, 84, 428. - .804 .835 —-.032
36 255, 40. 295, 864 .840 025
37 211, 33. 244, .865 .843 022
38 262, 60. 322. 814 846 —.032
39 177. 31. 208. 851 .848 .003
40 306. 75. 381. .803 .850 —.047
41 119. 15. 134. .888" .852 .036
42 209. 28. 237. .882 853 .029
43 148. 17. 165. .897 .854 .043
44 152. 18. 170. .894 .855 040
45 240. 56. 296. 811 .855 —.044
46 148. 25. 173. .855 .856 —.000
47 163. 21. 184, .886 .856 .030
48 190. 35. 225. 844 856 —.012
49 119. 18. 137. .869 .857 .012
TOTAL 7361. 5544, 12905.

15



FIGURE 2.1: Observed and fitted proportions ever-married; household survey data.
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where F is the cumulative frequency function defined in Section 1.2 and depends on three para-
meters: u, o and c.

The log-likelihood (2.1) under the model (2.3) becomes

LogL = 3" {m,, log [F(x+%)] +s, log [1-F(x+%)]}. (2.4)
X=X0

This function depends on the data {mx,sx} and the parameters y, o and ¢ through F, and may
be optimized numerically as noted in Section 8.

Maximum likelihood estimators (m.l.e.’s) of the parameters obtained using this method for the
Colombian data are

4 =2244, 0 =528, and ¢ = 0.858 (2.5)

The fitted mean age at marriage ﬁ is analogous to Hajnal’s (1956) singulate mean age at
marriage and may be interpreted in a similar way.

The fitted proportions ever-married by age are
I, = F(xt+%), (2.6)
where F denotes the cumulative frequency function F evaluated at the m.l.e.’s ,[I, oandec.

Table 2.1 (Column 6) shows fitted proportions ever-married for our example. Figure 2.1
compares the observed and fitted proportions.

2.3 Goodness of Fit of the Model

One advantage of the method of maximum likelihood is that it leads to a large sample test of
the goodness of fit of the model, which we now present.

Under the product binomial model (2.1), the unrestricted m.l.e.’s of the parameters II, are the
sample proportions P, defined at (2.2), while the restricted m.l.e.’s of the same parameters
under the model (2.35(are the fitted proportions Il defined at (2.6), leading to the likelihood
ratio criterion
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X A ~
X = 2 g:x{m" log(P, /L, )5, log[(-B)/(LTL)1}, (2.7)
0 .

which is distributed in large samples as a chi-squared statistic with degrees of freedom

V=X <Xy - 2 (2.8)

which is the number of ages or parameters in the unrestricted model (x, x ot minus the

number of parameters in the restricted model.
An alternative test criterion is the more familiar Pearson chi-squared statistic, which in this case
is given by
X P -1 )? .
2 ony Gl (29)
X=X, Hx(l-Hx)

and is also distributed in large samples as a chi-squared variate with » degrees of freedom.

For our example we obtain

x} =530, Pvalue = 011
x; = 527, P-yalue = .012
v =32 (2.10)

indicating a significant lack of fit.

Differences between observed and fitted values are given in Table 2.1 (Column 7), and show
lack of fit particularly at ages ending in 0 or 5 at the extremes of the range, a possible con-
sequence of heaping.

(As an alternative to raw residuals P -II, one may calculate standardized residuals
" A )
\/Hx(Px'Hx)/[Hx(l'Hx)]l/Z (21 1)

where a value greater than 2 indicates a significant departure from the model.)

These results confirm what was visually obvious from a plot of the data in Figure 2.1; the
observed proportions ever-married at the older ages are so erratic that no model could be
expected to replicate them.

2.4 Standard Errors of the Estimates

A further advantage of the method of maximum likelihood is that it provides large sample
approximations to the standard errors of the estimates.

Briefly, if 6 is a m.le. of a vector parameter § then, under certain regularity condllnons the
large sample distribution of 6 is normal with mean a and variance-covariance matrix I- (@) given
by the inverse of the information matrix

[alogL BlogL] _ [ azlogL]

1(6) = E
1 00 o 3990’

~

(2.12)

The optimization procedures used here (see Section 8) provide numerical estimates of the
matrix of second derivatives of the likelihood function, which in large samples should be
reasonably close to the negative of its expected value, the information matrix.

For our example we obtain
seql = .146,5.6.0 =162 and se.c. = .006 (2.13)
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These estimates are approximate and should therefore be interpreted with caution. The shape
of the log-likelihood function is such that numerical estimates of the second derivatives in a
neighbourhood of the optimum, and hence estimated standard errors, are unstable. Our
experience indicates, however, that the numerical results provide at least a rough indication of
the precision of the estimates.

A related question of interest is whether the estimated standard errors and the chi-squared
statistics introduced earlier — which assume simple random sampling — are appropriate in
stratified-clustered samples of the type used in the WES,

Experience from the WES indicates that design effects for nuptiality variables such as proport-
ion ever-married and mean age at marriage are usually not far from unity, see Verma, Scott and
O’Muircheartaigh (1980). Moreover, in later sections we shall be fitting the model to cohorts
defined usually by five-year age groups, which are cross-classes and hence not likely to be
seriously clustered. Under these circumstances we feel that treating the data as binomial should
give a fairly good approximation to standard errors and chi-squared statistics.

2.5 Robustness of the Estimates

So far we have estimated the parameters of the model using all ages in the range 15 to 49, but
clearly the procedure may be applied to any subset thereof. In theory four data points are re-
quired to estimate three parameters while reserving one degree of freedom for lack of fit, but in
practice we would not recommend using less than 15 ages or data points.

Table 2.2 (lines 2 to 6) shows estimates of the parameters, as well as standard errors and the
goodness of fit criterion, obtained by selecting progressively younger subsets of the age range.
Note that the estimates of the parameters remain fairly stable, even when only ages 15 to 29
are used. One would expect this result if there had been no change in nuptiality in the recent
past and if the data were of high quality. Note also that deleting the older ages increases the
standard errors, as less data are used, but also improves the quality of fit, as the less reliable
data points are ignored.

One of the difficulties posed by the poor quality of data for the older ages is that it makes
estimation of ¢, the proportion eventually marrying, rather unreliable. In our example we

TABLE 2.2: Estimates of parameters of the model fitted to grouped matriage data from the
Colombia household survey (1976). N

Ages Estimates Standard Errors Goodness of Fit

o) @ @ @ 6 © O © O W
X, X, U ] c s.e.d s.e.0 s.e.c X v p-value

15-49 2244 528 858 .146 162 006 530 32 011
15-44 2249 533 861 .160 174 007 465 27 .011
15-39 2244 528 858 167 179 009 324 22 071
15-34 2261 544 872 .230 234 015 2338 17 126
15-20 22.14 502 .830 .290 272 023 142 12 286
15-24 2179 474 794 539 452 057 11.1 7 135

Fixc 15-49 23.17 6.07 .90 115 145 1029 33 .000
Fixc 15-39  23.10 6.00 .90 112 140 — 532 23 .000
Fix c 15-29 2295 576 .90 040 .050 21.2 13 .069
Fix ¢ 15-24 2271 546 .90 141 170 — 13.7 8 .089

I

18



have obtained values of ¢ rather too low. An alternative is to set ¢ at a fixed value and optimize
the log-likelihood function (2.4) letting only p and o vary.

Table 2.2 (lines 7 to 9) shows estimates of p and o, as well as standard errors and goodness of
fit tests obtained by fixing ¢ at 0.90, which we believe to be a more plausible figure. The

resulting estimates of mean age at marriage are quite stable, even when only ages 15 to 24
are used. Hence we have a strong indication that nuptiality patterns have not changed much in

the recent past.
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3. ESTIMATION FROM INDIVIDUAL DATA ON
EVER-MARRIED WOMEN

3.1 The Data-Notation

The individual interview used in the WFS is usually applied to a sample of ever-married women
between the ages of 15 and 49 or a similar age range, and collects information on age at mar-
riage and age at interview. These data are frequently tabulated in single completed years of age.

Table 3.1 presents such a set of data for the cohort aged 25 to 29 in the individual interview of
the Colombian National Fertility Survey. (Table 2 in the Appendix shows similar data for the
cohorts aged 15 to 49.)

An important feature of this type of data for a sample of ever-married women, where each
cohort is represented only by those who have married as of the interview, is that the distri-
bution of age at marriage is truncated by age at the interview. This feature is reflected in Table
3.1 by the fact that there are no data below the main diagonal of the table.

From the point of view of estimation, truncation requires that we work with conditional prob-
abilities of marriage — that is the probability of marrying at a certain age conditional on marry-
ing by the current age of the cohort — rather than marriage frequencies. The use of such con-
ditional probabilities underlies all developments in this section.

TABLE 3.1: Tabulation of age at marriage by age at interview for women aged 25—29 at the
time of the survey, Colombia (1976).

Age at Marriage Age at Interview x
6)) (2 . 3) “) (5) (6)
a 25 26 27 28 29
11 0 1 1 1 1
12 2 4 0 8 2
13 4 4 4 6 3
14 8 5 8 8 4
15 14 10 7 13 8
16 14 12 9 16 12
17 8 10 15 13 7
18 15 13 11 16 12
19 17 19 9 10 16
20 13 18 9 12 9
21 12 8 12 15 11
22 1 11 12 6 10
23 10 8 4 7 5
24 8 6 1 4 3
25 1) 7 6 3 4
26 €} 1 4 5
27 2) 2 4
28 ) 5
29 2)

Total ever-married 127 137 121 146 123

Ever-married by

exact age x 126 136 119 144 121
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In fitting Coale’s model nuptiality schedule this circumstance implies that we will be able to
estimate two of the parameters of the model, namely p and o, governing age at marriage, but
not ¢, the proportion of the cohort ultimately marrying. The use of additional information to
estimate ¢ will, however, be considered in Section 4,

Let us introduce the following notation with reference to Table 3.1

X = age at interview in completed years, ranging from x to x,, (in our example 25 to 29)

a = age at marriage in completed years, ranging from a, to x (in our example 11 to x), for the
cohort aged x

m,= number of women married at age a completed years and now aged x completed years

m,= total number of ever-married women aged x completed years at the interview.

At this point we must note that truncation creates one further problem, namely the treatment
of women marrying at their current age of m,,. The difficulty is that the cohort aged x com-
pleted years at the interview has experienced a full year of exposure to marriage at each age a
< x completed years, but less than a year of exposure at age x itself.

One possibility is to assume that women aged x completed years at the interview are on the
average x+% exact years, treat women marrying at their current age as marrying between exact
ages x and x+¥%, and work with probabilities of marriage conditional on marrying by exact age
X+,

A simple alternative, which avoids any bias introduced by the above assumption and simplifies
some further developments, is to ignore women marrying at their current age. For the cohort
aged x completed years at the interview we simply truncate the experience at exact age x and
work with probabilities of marriage conditional on marrying by exact age x. For this purpose
we redefine

x-1
my= ¥ m,, = total number of women aged x completed years at the interview who had
a=a, married by exact age x.

In the following discussion we will adopt this simpler alternative. Although extensions to use all
data will be obvious in most cases, the details are cumbersome and will not be given.

3.2 Maximum Likelihood Estimation

Let us consider fitting the model to a real cohort aged x,, to x, completed years at the inter-
view. This may be a single-year cohort such as women aged 25 or a group of cohorts such as
women aged 25 to 29. In all cases, however, we work with the data in single-year form.

We shall treat the numbers {m x} married at each age a <x for the cohort aged x as having a

multinomial distribution with parameters m, and Talx , where
Talx = Probability of marrying between exact ages a and a+l conditional on marrying by
exact age X,

Note that for each of the cohorts in the age group X, tox, we have introduced a different set
of conditional probabilities.

The likelihood of the data for the cohorts X, tox is then a product multinomial distribution.
The logarithm of the likelihood is, except for a constant representing the multinomial co-
efficients,

X, x-1
logL = 2_ E_ m,, log (”alx)' 3.1
X=X, a=ag

The unrestricted maximum likelihood estimators of the conditional probabilities {"alx }, ob-
tained maximising (3.1), are simply
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Palx = 82X (3.2)
my
the sample proportions of women married between exact ages a and a+1 among those married
by exact age x.

Under Coale’s model nuptiality schedule, the probability of marrying between exact ages a and
a+l conditional on marrying by exact age x is given by

1 = G(a+1)-G(a) (3.3)
akx ()

where G denotes the cumulative distribution function of age at marriage with parameters u and
o defined at (1.8).

Expression (3.3) is simply the ratio of the probability of marrying between exact ages a and a+1
conditional on ever-marrying, to the probability of marrying by exact age x conditional on ever-
marrying.

Note that we have used the same cumulative distribution function G with parameters u and ¢
for all single-year cohorts in the age-group x, to x,; that is, we are fitting the same model
schedule to all cohorts in the group.

The log-likelihood function (3.1) under the model (3.3) becomes

1
log L = 33 m,, {log[G(a+1)-G(a)] dog[G(x)]} . (3.4)
X=X0 a=a0

The function (3,4) depends on the data{max} and on the parameters (u,0) through the cumula-
tive distribution function G, and may be optimized numerically as noted in Section 8.

Estimates obtained using this procedure for the cohort aged 25 to 29 in the Colombian individ-
ual survey are

f=12122 and 0 = 5.98 (3.5)

Note that although we have worked with conditional probabilities of marriage we have been
able to estimate the mean and standard deviation of the complete distribution of age at mar-
riage. This result is possible because both the truncated distribution (3.3) and the complete
distribution G depend on the same parameters ¢ and o.

It should be noted, however, that the estimates of the parameters 1 and ¢ which fit the trun-
cated experience of a cohort still going through the marriage process may not necessarily fit the
complete experience of the same cohort once it finishes marrying, a subject which will be dis-
cussed in more detail in Section §.5.

Approximate standard errors of the estimates, obtained from a numerical approximation to the
information matrix, are

sel =362 and se.o =.303 (3.6)

These estimates are relatively unstable, depending somewhat on the optimization procedure
used, but they provide at least a rough indication of the precision of the estimates.

Estimates of the parameters and associated standard errors for six 5-year cohorts in the Colom-
bian individual survey are given in Table 3.2 (Columns 1 to 5).

The results for the cohorts aged 20-24 to 35-39 indicate an increase in mean age at marriage of
approximately one year over the past 10 to 15 years. For the youngest cohort the results are
unreliable, as indicated by the large standard errors. For the cohorts 40-44 and 45-49 the
relatively higher means may represent mis-statement of age at marriage due to recall errors.
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TABLE 3.2: Estimates of the parameters of the model fitted to grouped marriage data from the
Colombia individual survey (1976).

Cohort Estimates St. Errors Goodness of Fit Homogeneity

1) () 3 @, ) © @O B ) (10) (11)
1 x?1 v

X, X, M g s.eu s.e.0 14 p p

20-24 2151 594  .640 479 596 48 121 40.7 38 .351
2529  21.22 598 362 .303 79.1 73 292 65.9 58  .222
30-34  20.62 500  .247 212 1209 98 .08 88.4 78 197
35-39 2043 5.38 251 217 141.0 127 .188 108.9 102 .302
40-44 2121 574 263 .226 122.1 145 917 92.3 117 939
45-49  21.69 6.12 320  .266 1634 172  .669 132.6 139 .638

TABLE 3.3: Proportions marrying at each age among women 25-29 married by age at
interview, Colombia (1976).

Age at Age at Interview x
Marriage 55 26 27 28 29  Pooled  Fitted  Difference

1) (2) (3) C)) ) (6) Q)] ®) 9)

a Paix Talx Talx TalxMa|x
11 .000 .007 .008 .007 .008 .006 .006 .000
12 016 .029 .000 .056 017 .023 .016 .007
13 032 .029 034 .042 .025 .030 .034 —.003
14 063 .037 .067 .056 .033 .048 .055 —.007
15 11 .074 .059 .090 .066 075 074 .001
16 11 .088 076 11 .099 .091 .088 .003
17 063 .074 126 .090 .058 077 .095 —.018
18 119 .096 .092 A1l .099 097 .095 .002
19 135 .140 076 .069 132 103 .090 012
20 .103 132 .076 .083 .074 .088 .083 .006
21 .095 .059 101 .104 091 .084 074 010
22 .008 .081 101 .042 .083 .058 .064 —.006
23 .079 .059 034 .049 .041 .049 055 —.006
24 .063 .044 .092 .028 .025 .046 .047 —.001
25 051 .050 .021 .033 .037 .039 —.003
26 .008 .028 041 025 .033 —.008
27 014 .033 .022 028 —.006
28 .041 .041 023 .018

Number

of cases 126. 136. 119, 144. 121.

Fitted proportions married by exact age x among women who will eventually marry:

Cohort 25 26 27 28 29
G(x) 789 825 855 .880  .900
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3.3 Goodness of Fit of the Model

The unrestricted m.l.e.’s of the conditional probabilities {7r } under the product multinomial
model (3.1) are the observed proportions of women marned between exact ages a and a+1
among those married by exact age x, {palx} defined at (3.2).

The restricted m.l.e.’s of the same conditional probabilities, under the restrictions (3.3) impos-
ed by the model nuptiality schedule, are given by

1 . = G(at1)-G(a)
alx GA(X) * (37)
A A
where G denotes the cumulatlve distribution function G evaluated at the m.l.e.’s (4,0).

We shall refer to the m, X}as the fitted proportions married between exact ages a and at+l
among those married by exact age x.

Table 3.3 shows observed proportions for the cohorts 25 to 29 (Columns 2-6), and fitted pro-
portions corresponding to the cohort aged 29 (Column 8). Fitted proportions for the other
cohorts may be calculated using the fitted values G(x) given at the bottom of the table, and the
following relation, which follows from (3.7).

~
"

oy = S
alel = Tab Gy (3.8)

The likelihood ratio and Pearson chi-squared statistics for testing the goodness of fit of the
model are given by

X x-1 AL
= 2 3 = m,, log (palx/"a]x) 3.9)
1 X=X, a7a,
and
X, %l n " :
= 2
X2 = z z . I'le (palx-ﬂalx) /Tfalx’ (310)
P X=X, a=q
and are distributed in large samples as chi-squared statistics with degrees of freedom v given by
X
p=3  (clay)2 (3.11)
X=X,

which is the total number of independent cells, x-1-a, for each cohort aged x, minus the num-
ber of parameters estimated; note that the last cell in each cohort contains truncated data
which were ignored.

(If there is an age a, such that no one in the cohorts x, to x, has married after that age (i.e.

=0 fora>a ) we ignore such cells in calculating the chi- squared statistics and correct the
degrees of freedom accordingly. Other cells with zero entries (a <a<a ) are, however, included
in the calculations.)

For the cohort 25 to 29 we have,

12 = 79.1 , p-value = 292
; = 74,1 , p-value = 441 (3.12)
v =173

indicating a fairly good fit to the data.
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FIGURE 3.1: Adjusted observed and fitted proportions ever-married by each age among those
who will ever marry in the cohort aged 25—29; individual survey data.
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______ age 25 v wesage27 ——-age 29

FIGURE 3.2: Adjusted observed and fitted proportions marrying at each age among those who
will ever marry for the cohort aged 25-29; individual survey data.
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Values of the likelihood ratio chi-squared statistic, as well as its degrees of freedom and associa-
ted p-value, are shown in Table 3.2 (Columns 6-8) for the six 5-year cohorts in the individual
interview of the Colombian survey, In general the model fits the data fairly well.

A visual impression of the goodness of fit of the model to each individual cohort x may be ob-
tained by plotting the observed and fitted proportions marrying at each age among all women
married by exact age x. Alternatively, one may accumulate these data and plot observed and
fitted proportions married up to each age, among all women married by exact age x. In either
case, a separate plot is required for each individual cohort as the conditioning age varies.

Another type of plot, which has certain advantages, may be obtained by calculating adjusted
sample proportions married up to each age among all women who will eventually marry

A a-1
=Gx) X Pyix ERS3 (3.13)
: a=a
0

and plotting these together with a(a), the fitted cumulative distribution function. Note that an un-
cumulated adjusted sample proportion marrying at each age would be given by G(x)p this
uncumulated schedule is ordinarily more irregular than the cumulated version and tl'lereby
reveals distortions more readily.

Figures 3.1 and 3.2 show both types of plots for the cohorts aged 25 to 29 in the Colombian
survey. One advantage of this type of plot is that all single-year cohorts in the age group X, to
X, may be displayed on the same graph.

Note however, that the adjusted values defined at (3.13) are a mixture of observed and fitted
proportions, and in particular must necessarily agree with the fitted dlstnbutlon at exact age X,
as is visually evident in Figure 3.1.

3.4 Homogeneity of Cohorts

As noted earlier, the model may be fitted to a single-year cohort, such as women aged 25, or to
a group of cohorts, such as women aged 25 to 29, by assuming that they have all followed the
same nuptiality schedule.

In the latter case lack of fit of the model, as indicated by the tests introduced in the previous
section, may be due to the fact that the different single-year cohorts in the group have not
followed the same nuptiality schedule, or to genuine lack of fit of the model to their common
schedule.

In order to distinguish these cases we now introduce a test for homogeneity of cohorts, by
fitting a model where all single-year cohorts in the age group x,, to x, are assumed to follow the
same schedule which is otherwise unrestricted.

To do this we consider the product multinomial model (3.1) with parameters m, and {r_, }.
Recall that m,, is the probability of marrying between exact ages a and a+l condltlona{ on
marrying by exact age x, and that we introduced a different set of conditional probabilities for
each cohort.

We now write all sets of conditional probabilities in terms of a common set{ﬂ } , which for
convenience will be taken to refer to the older cohort.

T
alx1

ﬂa,x = —~)—(—.1——-——> X<X1 (3.14)

T TMalx
a=a
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Thus we have written Talx 2 the ratio of the probability of marrying between exact ages a and
a+l conditional on marrying by exact age X, >X, to the probability of marrying by exact age x
conditional on marrying by exact age X,

The likelihood of the data under the set of restrictions (3.14) becomes

| )2(31 x-1 x-1
oglL = xx, az=a0 m,. [108(7Talx1)'log a?=a0 ’lfalxl)] ) (315)

Asano (1965) has derived m.le.’s for multinomial distributions supplemented by incomplete
sets of observations. A direct extension of his work to suit the truncated nature of our data
shows that the estimates that maximise (3.15) may be calculated recursively as follows

f m

ax,
s a‘—‘xl-l
m
X
maxl-l"'maxl
(1-m. ) a=x, -2 3.16
— mx _1+(mx -mx -IX) xl-llxl ’ ! ( )
Ty =4 1 S B
alx,
Xy
pX
=max(x, a+1)"ax X -1
(1-21 ’n’alx
X, a a=a+1 "™ s a=ao,..,xl-3
2 E_ mgy
x=max(x,,a+1) a=a,
.
Thus, we first calculate Tx,-1{x, use this estimate to calculate —x 2%, and carry on calcu-
* . — Y - 1
lating successively x,-31%, down to 7 , X, 1

The restricted m.l.e.’s of the conditional probabilities{?ralx}applying to the cohort aged x, under
the set of restrictions (3.14), are given by

T
alx
= —1 x<x (3.17)

x-1
z Tfa‘

a—ao

(We use the notation 7 bar to distinguish these estimates from those obtained under Coale’s
model, which we denoted 7 hat.)

We shall refer to the TTax as the pooled estimates of the conditional probabilities of marry-
ing between exact ages a and a+l given marriage by exact age x. Pooled estimates pertaining to
the cohort aged 29 in the Colombian survey are shown in Table 3.3 (Column 7). Pooled
estimates for younger cohorts may be calculated using (3.17).

The unrestricted estimates of the same conditional probabilities are, of course, the sample pro-
portions{palx} defined at (3.2).

Talx

X

The likelihood ratio and Pearson chi-squared statistics for testing the homogeneity of the co-
horts aged x, to x, are given by
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X x-1

2 _
X; = 2z % m,, log (palx/"alx)’ (3.18)
X=X a=a
0 0
and
, X x-1
- — 27
=2 z mx (palx-ﬂalx) /Walx, (319)

p X=X, a=a,
and are distributed in large samples as chi-squares with degrees of freedom v given by
x,-1
v=2 (x-1-a,) (3.20)
X=X,

which is the number of independent cells in the data, (x-1-a o) for each cohort aged x, minus the
number of independent parameters estimated, (x,-1-a )

(If there is an age a <x,-1 such that nobody in the cohorts aged x, to x, has married after age
a,,we substitute x-1 by min (a, ,x-1) in (3.18)-(3.20), thus avoiding division by zero and correct-
1ng the number of degrees of flreedom )

For the cohorts aged 25 to 29 in the Colombian Survey we have

X12 = 659 p-value = ,222
= 60.1 p-value = 400
= 58 (3.21)

indicating that the cohorts may be considered to have followed the same nuptiality pattern (a
hardly surprising result, since the test in the previous section had indicated that the same
model schedule did fit these five cohorts well).

The likelihood ratio statistics for homogeneity of each of the six 5-year cohorts in the Colom-
bian sample, as well as the corresponding degrees of freedom and associated p-values, are shown
in Table 3.2 (Columns 9-11). All 5-year cohorts appear to be homogeneous, a fact consistent
with the general impression that nuptiality has not been changing very much in Colombia.

In countries where age at marriage has been changing rapidly, however, one may find that 5-
year cohorts are not homogeneous. In such cases a different model schedule should be fitted to
each single year cohort in a heterogeneous group.

It is also possible that a x? test will reveal that cohorts are not homogeneous even where it can
be confidently assumed that nuptiality has not been changing; this situation is likely to arise
when the quality of data is poor. In particular mis-statement of age can lead to the appearance
of non-homogeneity and of a poor fit of the model to the data. In this case, the model can best
be viewed as a diagnostic and smoothing device (Trussell, 1980).

Note that we have fitted two models to the same data, namely the model schedule defined by
the restrictions (3.3) and the more general homogeneous schedule defined by the restrictions
(3.14), and that these models are hierarchical, that is (3.3) is a subset of (3.14).

This nesting property permits us to compare the two models by simple subtraction of the chi-
squared statistics and the corresponding degrees of freedom for each model. In the case of the
likelihood ratio x? the resulting statistic is the same that would be obtained directly from the
observed and pooled proportions, namely

X4 x-1
x? =22 p) 5 log (T, Ix/ﬂalx) (3.22)
1 X=X, a=a,
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FIGURE 3.3: Adjusted pooled and fitted proportion ever-married by each age among those
who will ever-marry for the cohort aged 25-29; individual survey data.
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FIGURE 3.4: Adjusted pooled and fitted proportions marrying at each age among those who
will ever-marry for the cohort aged 25—29; individual survey data.
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For the cohorts aged 25 to 29 in the Colombian survey we have

xf = 13.2 p-value = 588
Xp= 14.1 p-value = ,522
y =15 (3.23)

indicating that the model schedule agrees fairly well with the pooled estimates.

A visual impression of the goodness of fit may be obtained by plotting the pooled and fitted
proportions, or by calculating the adjusted pooled values

— A a-1
M = G(x,) T 7y
o=, (3.24)

and plotting these together with the fitted cumulative distribution function é(a), as discussed
in Section 3.4. An example of such a plot is given in Figure 3.3, and the uncumulated version is
displayed in Figure 3.4.
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4. ESTIMATION FROM INDIVIDUAL AND
HOUSEHOLD DATA

41 The Data
We now consider estimating all three parameters of the model schedule by combining house-

hold data on marital status and age at interview for all women, with individual data on age at
marriage and age at interview for ever-married women.

The basic data are as given in table 2.1 for the household interview and Appendix Table 2 for
the individual interview in the Colombian National Fertility Survey. In this case the individual
interview was conducted in a sub-sample of the household survey.

The notation to be used has already been introduced in Sections 2.1 and 3.1. It will only be
necessary to distinguish household and individual data by adding a prime to identify the latter.
Thus, m,, represents the number of ever-married women aged x completed years in the house-
hold survey, while m)’( represents the number of ever-married women aged x completed years in
the individual survey.

We now discuss two methods of combining these data, which we term “two-stage estimation”
and “full information estimation”. These methods differ in the extent to which they use house-
hold data.

4.2 Two-stage Estimation

Suppose that at stage 1 the parameters ¢ and o have been estimated using individual data by the
procedures described in Section 3.
For a real cohort aged X, to X, completed years at the interview, let/'l and gdenote the maxi-
mum likelihood estimators of the parameters, and let G denote the cumulative distribution
function evaluated at the m.l.e’s,

At stage 2 we consider the likelihood of the household data given at (2.1). Recall that we treat
m, as having a binomial distribution with parameters n, and I, .Under the model

I, = F(x+) = ¢ G (x+4). 4.1)
We now treat G as known by substituting é This reduces the log-likelihood function to
X ~ A
logL = D) {nlxlog[cG(x+1/z)] +(nx-mx)10g[l~cG(x+1/z)]} . (4.2)
X=X
0

Differentiating with respect to ¢ we obtain
dlogl i { My . (llx'mx)G(X+l/z)}
oz c 1-cG(x+%4)
X=X,

4.3)

In the case of a single-year cohort (x,=x, ), setting this derivative to zero leads to the maxi-
mum likelihood estimator

L .
G(x+%h)  G(xth)
Thus, the estimate of the proportion ¢ who will ultimately marry for the cohort aged x is
simple the ratio of P, , the propgrtion ever-married at exact age x+% among all women, estimat-

ed from household data; to G(xt}2), the proportion ever-married at exact age x+% among
women who will eventually marry, estimated from individual data.

(44)
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TABLE 4.1: Estimates of ¢ obtained by treating u and ¢ as known.

age X Py /0y (S(x-i-‘/z) gx
(1) (2 (3) 4
25 .633 .808 784
26 702 .841 .835
27 731 .868 .842
28 746 891 .838
29 778 .909 .856

Table 4.1 shows details of the application of this procedure to each single-year cohort in the
age-group 25 to 29 in the Colombian survey, including values of P obtained from the house-
hold data in 2.1, values of G evaluated at the m.l.e.’s u—21 22 and ¢=5.98 obtained from
individual data in Sectlon 3.2, and the corresponding ratios or estimates of c.

In the case of a group of cohorts (x,<x, ), setting the derivative (4.3) of the log-likelihood
function to zero does not lead to an analytlc expression for the m.l.e. of c. It is possible, how-
ever, to derive a recursive relationship for this estimator,

Let c denote the estimate of ¢ obtained from a single-year cohort age x by applying (4.4).
Smce m,, has a binomial distribution with parameters n, and II, given at (4.1), and G(x+%)
is assumed known, we have

B(c,)=c, (4.5)
and ,,
~ 1-cG(x+%
Y = £ .
ar(c,) 0, GOt (4.6)

Consider now combining the different estimates of ¢y, by calculating a weighted average
;1 w,C
XX
A XX, 4.7
c=s —
TWy

with weights equal to the reciprocals of the variance of (A:X,
Gx#!
w. = fx_ﬁ_@_ (4.8)
X o(1-cG(x+4))
where in practice ¢ must be replaced by its estimate .

A
The resulting estimate ¢ is a minimum variance unbiased estimator of ¢, and hence a maximum
likelihood estimator of ¢ under the binomial model.

Recalling the definition of 8x given at (4.4), the weighted average (4.7) with weights (4.8)
becomes

X=X0 1-¢Gx (49)
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TABLE 4.2: Two-stage estimates of ¢ obtained by treating . and o as known.

age x, tox, C se.C. (no. of iterations)*

() @ 3) @ (5)
2024 785 015 1 2)
25-29 830 012 1 2)
30-34 854 010 1 (2)
35-39 845 .010 1 2)
40—44 866 011 1 2)
4549 851 011 1 2)

*Number of iterations needed until there was no change in the third decimal place, initial
value = average ¢ for the 5 individual ages. The number of iterations when the initial value was
1.0 is given in parentheses.

where G, is shorthand for G(x+1/£) The expression (4.9) has ¢ on both sides of the equation,
but may)i)e used to obtain the estimate iteratively. Starting with a value of ¢=1 we have found
that only 2 or 3 iterations using (4.9) are needed.

Note from (4.7) that since w, =1 /var(gx), the variance of the m.Le. ¢ is simply
X, A
n, G
Var(c) = 1/5 XX (4.10)
X=X, c(1-¢G,)

and may be estimated by substituting ¢ for ¢ in (4.10).

For the cohorts aged 25 to 29 in the Colombian survey we have

= 830 and s.e.c. = .012 (4.11)

In many practical applications we have found that a simple unweighted average of the c gives
a reasonable estimate of ¢, and that a single iteration using (4.9) with the unweighted average as
the starting value is sufficient to obtain the m.le. Results for the other cohorts are given in
Table 4.2.

4.3 Full Information Estimation

In the case of a single-year cohort the household data contain no information about the shape
of the nuptiality schedule, but only about its level. In this circumstance the procedure
described in the previous section extracts all available information from the data.

In the case of a group of cohorts, however, the household data contain some information about
the shape of the schedule which is not used by the two-stage procedure. We now consider an
alternative method which uses all available information,

The basic idea is to fit the model schedule simultaneously to the household and individual data
by combining the procedures described in Sections 2 and 3.

Thus, for each real cohort aged x (x <x<x,) we treat the household data {mx} as having a bi-
nomial distribution with parameters n, and II, defined in Section 2.2, and the individual data
as having a multinomial distribution with parameters m, and 7 alx defined in Section 3.2,
independently for each age.

X

The joint likelihood of the data is then a product binomial/multinomial distribution, and the
log likelihood is simply the sum of (2.1) and (3.1), namely
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X, x-1
logl = 2 {mxlogHX+sxlog(1-Hx)+Z maxlog(ﬂalx)}. (4.12)
X= a=a

%o

Under the model nuptiality schedule we introduce the joint restrictions (2.3) and (3.3),

szF(x-H/é) and T lx = M._G_(g) (4.13)
4 G(x)
The log-likelihood under the model becomes the sum of (2.4) and (3.4),
x-1
E {m log [F(x+%5)] +s,log[1-F(x+}5)] + Z max(log [G(a+1)-G(2)] logG(x))}
X=X, a=a,
(4.14)

This function depends on the two sets of data {m S } and { } as well as the parameters u,
o and ¢, through F and G, and may be optimized numerlcally

For the cohort aged 25 to 29 in the Colomblan survey we obtain
u 2140, o=6. 11 and ¢ = 838 4.15)

Comparison of these estimates with those obtained using individual data only shows that the
household information has changed slightly the estimates of u and 6. The estimate of ¢, on the
other hand, is practically the same as that obtained earlier.

All the developments in Sections 2 and 3 extend naturally to the combined estimation pro-
cedure. Observed and fitted values pertaining to the household and individual data are defined
as in (2.2), (2.6), (3.2) and (3.7), and the likelihood ratio goodness of fit criterion becomes
simply the sum of (2.7) and (3.9), namely

X X-1

2 1 1-P

x =22 {m, log(w—)+s 1og(ﬁ’f}+z mgylog(™ a'x )} (4.16)
X=Xo a= a

with degrees of freedom given by
v = (XX, D 2 (x-1-a,)-3 (4.17)
X=X,
The chi-squared statistic may easily be partitioned into components reflecting the contributions
from the household and individual data. In assigning degrees of freedom to these components it

would seem reasonable to consider the parameter ¢ as estimated from the household data and
the parameters u and o as estimated from the individual data.

For the cohort aged 25 to 29 we obtain the following results

x12 v p-value
h 4.2 4 .383
i 794 73 283
h¥: 83.6 77 284 (4.18)

indicating a good fit to both the household and the individual data.

The test for homogeneity of cohorts developed in Section 3.4 may still be applied to the in-
dividual data, but no analogous test exists for the household component.

Table 4.3 shows estimates of , o and ¢ obtained by applying these procedures to the six 5-year
cohorts in the Colombian survey.

34



TABLE 4.3: Estimates of parameters of the model fitted to grouped marriage data from both
the Colombia household and individual surveys (1976).

Ages Estimates Standard Errors Goodness of Fit

“m» 0 o @ & ® O ® © 0
Xo—X, u 0 c s.e.ll s.e.0 s.e.c. X“1 v P
2024 21.80 6.14 .808  .524 398 046 60.0 52 .106
25-29 21.40 6.11 838 376 314 021 83.6 77 284

30-34 20.70 5.07 856 250 216 012 130.4 102 .031
35-39 20.44 5.38 .846 253 213 .010 148.3 131 .143
40—44 21.23 5.76 866  .265 224 011 135.9 149 711
45-49 2169  6.12 851 306 254 011 168.9 176 636

TABLE 4.4: Estimates of the parameters of the model fitted to grouped marriage data from
both the Colombia household and individual surveys (1976), when c is fixed at a preassigned
level.

Age ¢ Fixed Estimates Standard Errors Goodness of Fit

m e e @ ©® © O ® © a
XX, i g c s.e.d s.e.0 . s.e.c x“1 v p

15-19 No 4139 15.18 14192 8276 3910 16.553 323 32 450

Yes 24.18 7.10 90 346 317 — 453 33 075
Yes 23.88 6.93 85 342 316 — 464 33 .060
20--24 No 21.80 6.14 .808 524 398 046 650 52 .106
Yes 22.77 6.84 90 157 1700 — 68.6 53 .073
Yes 22.24 6.46 85 .180 81 — 66.1 53 .107
25-29 No 21.40 6.11 838 376 314 021 836 77 284
Yes 22.34 6.89 .90 215 193 — 916 78 .139
Yes 21.57 6.26 85 217 188 — 84.1 78 298

4.4 Fixing the Value of ¢

Examination of the results shown in Table 4.3 reveals that the estimates of ¢ are quite low,
specially for the younger cohorts. Because of previous work on the data from the Colombia
National Fertility Survey, we know that there are mis-statements of marital status in the house-
hold survey which result in under estimation of proportions ever-married by age. To reduce the
error introduced into the estimates of the mean and standard deviation of age at marriage by
errors in the household data, the value of ¢ can be fixed as it was in Section 2.6. Results of this
exercise are shown in Table 4.4 for two values of ¢, .85 and .90.

For the age group 20-24 raising the value of ¢ from its unconstrained estimate of .81 to .85 and
then .90 raises the estimate of the mean from 21.8 to 22.2 to 22.8. Raising the value of ¢
effectively rotates the fitted cumulative schedule about the current age of the cohort in
question; it increases fitted proportions at older ages and depresses fitted proportions at younger
ages, thereby raising the mean (and standard deviation), The range of the estimates of u for
different values of ¢ (in this case a range of u of one year produced by changing c by .1) is large
enough so that one cannot place too much faith in the estimates unless one is fairly confident
about the value of c.
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The option of fixing ¢ dramatically improves the estimate of u and o for the youngest cohort
aged 15-19 at the time of the survey. As is shown in Table 4.4, the unconstrained estimates
are quite absurd: a mean of 41.4 and a proportion ever-marrying of 14.2. Fixing ¢ at either
.85 or .90 produces estimates of u which are much more reasonable, 23.9 and 24.2, respect-
ively.

Note that for the cohort 15-19 the range in estimates of u produced by a range in ¢ of .05
(from .85 to .90) is only .3 year while for the cohorts aged 20-24 and 25-29 the ranges are .5
year and .8 year respectively. This result is due to the rotation effect produced on the fitted
cumulative curve mentioned earlier; the effect on the mean will be greater for older than
younger cohorts since for older cohorts more frequences at youngest ages are depressed in
addition to more frequencies at the oldest ages being raised. The magnitude of the range in
estimates of u, and hence the degree of uncertainty about the estimate, when ¢ is changed will
depend both on the magnitude of the change in ¢ and on the data. For some data sets, the
range can be rather small. Hence, the option of fixing ¢ can be valuable, but its value cannot be
determined with precision in advance.
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5. ESTIMATION FROM INDIVIDUAL DATA ON
ALL WOMEN

5.1 The Data-Notation

The WFS individual interview is sometimes applied to an all-women sample; that is, a sample of
women between the ages of 15 and 49; or a similar age range, selected irrespective of marital

‘status. This has often been the case in WFS surveys in Latin America.

In such cases data on marital status by age at interview for all women and data on age at mar-
riage by age at interview, are available for the same sample of women, a feature which simplifies
estimation procedures. These data are often tabulated in completed years.

Table 5.1 presents such a set of data for the cohorts aged 25 to 29 in the Colombian individual
survey. For each cohort the numbers marrying at each age are the same as shown earlier in
Table 3.1, but this information has now been complemented by the numbers remaining single
at the date of the interview. (Appendix Table 1 shows such data for all cohorts in the survey.)

TABLE 5.1: Tabulation of age at marriage by age at interview for women aged 25—29 at the
time of the survey, Colombia (1976).

Age at Marriage Age at Interview x
1 (2 (3) @ ) (6)
a 25 26 27 28 29
10 0 0 0 0 0
11 0 1 1 1 1
12 2 4 0 8 2
13 4 4 4 6 3
14 : 8 5 8 8 4
15 14 10 7 13 8
16 14 12 9 16 12
17 8 10 15 13 7
18 15 13 11 16 12
19 17 19 9 10 16
20 13 18 9 12 9
21 12 8 12 15 11
22 1 11 12 6 10
23 10 8 4 7 5
24 8 6 11 4 3
25 1 7 6 3 4
26 . 1 1 4 5
27 2 2 4
28 2 5
29 2

Total ever-married 127 137 121 146 123

Total never married 57 42 31 35 "23

Total ever married by

exact age X 126 136 119 144 121

Total never married by

exact age x 58 43 33 37 25
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An important feature of this type of data for an all-women sample is that although the exper-
ience of each cohort is incomplete, the cohort itself is complete, in the sense that it is repre-
sented by a sample of all its members. In this case the distribution of age at marriage is said to
be censored (rather than truncated) by age at the interview.

From the point of view of estimation censoring does not present any special problems, and we
shall be able to work directly with marriage frequencies, and thus estimate all three parameters

of the model schedule.

Let us introduce the following notation with reference to Table 5.1:

m, = number of women married at age a completed years and aged x

X completed years at the interview
m,= az=:a m,, =number of ever-married women aged x completed years at the interview
Sy 0 = number of single women aged x completed years at the interview
n=my+s, = total number of women aged x completed years at the interview

We now consider briefly a minor difficulty that arises in the treatment of women married at
their current age, m,, . As noted earlier the cohort aged x completed years has experienced a
full year of exposure to marriage at each age a<<x but less than a year at age x.

One possibility is to assume that women aged x completed years are on the average x+% years,
and to treat the number married at age x as married between exact ages x and x+%, and the
number single at age x as not married by exact age x+%.

A simple alternative, which avoids any bias introduced by the above assumption, is to combine
women married at age x completed years with women remaining single at age x completed
years, and to treat the sum as the number remaining single at exact age x.

For this purpose we redefine

x-1

m, =% m,, (Fold m,-m )  number of women married by exact age x among women
a=a, now aged x completed years

Sy =Ny My (=old sx+mxx) number of women remaining single at exact age x among

women now aged x completed years.

Note that the number of cases remains ny, as we have just reclassified m,, observations.

X
In the following discussion we adopt this simpler procedure. Extensions to treat m, as married
by exact age x+% are relatively simple, although details are cumbersome and will not be given.

5.2 Maximum Likelihood Estimation

We now consider fitting the model to a real cohort aged X, to x, completed years at the inter-
view.

We shall treat the numbers {m } marrying at each age a<x and the number{s }smgle at exact
age x, for the cohort aged x, as having a multinomial distribution with parametels ax}
a=a,,...,x-1 where

,, = probability of marrying between exact ages a and a+1 for the cohort aged x.

Only x-a, parameters are required for each cohort, as the remaining parameter is
x-1
1- X m, =probability of remaining single at exact age x for the cohort aged x.

a—ao

Note that we have introduced a different set of marriage probabilities for each single year
cohort in the age group x to x p



Assuming that the cohorts are mutually independent, the likelihood of the data is given by a
product multinomial distribution, with log-likelihood
X, x1 x-1
logL= 2 { 2 my, log(my)ts,log(l- T m 00 (5.1)
X=X, a=a, a=a

The unrestricted m.l.e.’s of the {nax} are the sample proportions married at each age.

Pay = 2%, (5.2)

Ny

with the proportion single estimated by Sx/nx'
Under Coale’s model nuptiality schedule we have

7,y =F(at1)-F(a), (5.3)
with the probability of remaining single at age x given by 1-F(x), where F is the cumulative
frequency of first marriages with parameters y, o and ¢ introduced in Section 1.2,

Note that we are fitting the same model schedule F to all the single-year cohorts in the age
group x, tox, .

The log-likelihood (5.1) under the model (5.3) becomes

X x-1
logL = > {: m,, log[F(a+1)-F(a)] +s,log[1-F(x)]} (5.4)
X=X0 a=a0

This function depends on the data {max} and {s } , and on the parameters u, ¢ and ¢ through
F, and may be optimized numerically in the usuaf(fashion.

Applying this procedure to the cohort aged 25 to 29 in the Colombian individual survey we
obtain the estimates

#=21.27, 6=6.02 and ¢=910 (5.5)
with estimated standard errors, based on an approximation to the information matrix,
s.e.4=.363, 5.6.0=304 and 5.6.6.=.025 (5.6)

TABLE 5.2: Estimates of pérameters of the model fitted to grouped marriage data from the
Colombia individual survey (1976). All-women sample.

Homogeneity of

Ages Estimates Standard Errors Goodness of Fit Cohorts

(1) @ & & 6 © 0 © @ a ay 3d2) @13
.e.c

X,~x, M o ¢ sefli skl s x21 v p X1 v p

2024 21.62 6.01 .887 .609 459 064 61.6 52 170 440 42 388
25-29 21.27 6.02 910 .363 .304 .025 803 77 376 673 62 .302
30-34 20.64 5.02 915 .238 205 .014 1247 102 .063 90.9 82 .235
35-39 2044 538 885 252 217 013 1435 132 233 111.2 106 .346
40-44 2122 575 919 270 221 013 1276 152 926 995 122 .932
45-49 21.68 6.12 908 .305 .252 015 1669 182 .783 136.1 146 .710
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We note that although the estimates of 1 and o are similar to those obtained earlier using the
individual data for the ever-married women, the estimate of ¢ is much more reasonable than
that obtained using the household data (even though there are many fewer observations in the
individual data), a clear indication of the better quality of the individual data. Results for all
S-year cohorts in the Colombian survey are summarised in Table 5.2 and confirm the above
conclusion.

Another indication of the better quality of these data is shown by the results of fitting the
model just to data on single and ever-married women by age at interview as was done in Section
2. Results, which are shown in Appendix Table 4, are much more stable,

The option of fixing ¢ at a value believed to reflect the proportion of women who will eventual-
ly marry and re-estimating u and ¢ can be used to advantage even w1th an all women sample.
The unconstrained estimates for the cohort aged 15-19 are (i=29.8, 6=10.3, and &=2.7; these
values are clearly absurd. If c is fixed at the value .90, the est1mates of I and o fall to (1=23.7
and 0=7.0; if ¢ is fixed at .85 the estimates are shghtly lower: 4=23.4, 6=6.8. Although the
range of estimates of the mean produced by fixing c at .85 and .90 is not so small that we could
predict with confidence a precise value of the ultimate mean, either choice of ¢ (or any other
plausible one) produces estimates which are far more plausible than those obtained when ¢ is
not fixed.

5.3 Goodness of Fit of the Model

The unrestricted m.l.e.’s of the parameters {W }are the observed proportions married at each
age defined in (5.2).
The restricted m.l.e.’s of the same parameters under the model, or fitted proportions marrying

at each age, are given by " R
m,~F(a+1)-F(a), (5.7

with the fitted proportion single given by l-ﬁ(x), where B denotes F evaluated at the m.le.s 1,
o and c.

Observed and fitted proportions marrying at each age and remaining single at their current age
for the cohorts aged 25 to 29 in the Colombian survey are given in Table 5.3 (Columns 2-6 and

8).

The likelihood ratio and Pearson chi-squared statistics for testing the goodness of fit of the
model are given by

X, x1

2
Xl = 2% { > log[an/ﬂaX] +s log[ ]} (58)
X=X0 a=ao
and
X, x-1 A 2 R ,
X; = X HX{E (pax-ﬂax) + [Sx/nx - 1+F(X)] } (59)
X=X0 a=a0 ﬂax I'F(X)

In large samples both criteria are distributed as chi-squared statistics with degrees of freedom v
given by

Xy

v=2 (x-a,)-3, (5.10)

X“XO‘

which is the total number of independent cells less the number of parameters estimated.
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TABLE 5.3: Proportions martying at each age among all women 25—29, Colombia (1976).
All-women sample.

Age at Age at Interview x

Marriage 25 26 27 28 29 Pooled Fitted Difference

(1) (2) (3) 4) (%) (6) (7) ®) 9)
-— T -_— A

a Pajx Malx Talx Talx Ta|x
11 .000 .006 .007 .006 .007 .005 .005 .000
12 -0 .022 000 044 .014 .019 013 .006
13 022 .022 .026 .033 .021 .025 027 -.003
14 .043 .028 .053 .044 027 .039 .045 —.005
15 .076 .056 .046 .072 .055 .062 .060 .001
16 076 067 .059 .088 .082 .075 .072 .003
17 .043 .056 .099 .072 .048 .063 077 -.014
18 .082 .073 .072 .088 .082 .080 .077 .002
19 .092 .106 .059 .055 .110 .084 .074 .011
20 071 101 .059 .066 .062 .072 .068 .005
21 .065 .045 .079 .083 .075 .069 .060 ~009
22 .005 .061 079 .033 .068 .048 .053 —.005
23 .054 .045 .026 .039 .034 .040 .045 —.005
24 .043 .034 .072 .022 .021 .038 .039 —.001
25 .039 .039 .017 .027 031 .033 —.001
26 .007 .022 .034 022 027 —.006
27 .011 .027 .019 023 —.004
28 .034 035 .019 .016

Probability of

remaining

single at

exact age x .315 240 217 204 A71 175 .183

Number of

cases 184. 179. 152. 181. 146.

For the cohort aged 25 to 29 we obtain

2 = =
X 80.3 p value = .376 (5.11)
x; = 749 p value = .547
v =71

indicating an excellent fit to the data.

Results of the likelihood ratio goodness of fit test for all cohorts in the Colombian survey are
given in Table 5.2.

5.4 Homogeneity of Cohorts

We now introduce a test for homogeneity of cohorts for all-women samples which is analogous
to that introduced for ever-married samples in Section 3.4,

We assume that all cohorts have followed the same nuptiality schedule {T(a} which is otherwise
unrestricted, so that the probability of marrying between exact ages a and a+1 is
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Ta™M, forall cohorts x, X SXSX (5.12)

with the probability of remaining single at exact age x being simply

x-1
1-2 7r
a=a,

a

The likelihood function (5.1) under the homogeneous model (5.12) is given by
X, x-1 x-1
logL = 2 { Z  my,log(m,)ts, log(1-Z wa)} (5.13)
X=X, a=a; a=a,

It can be shown that the estimates which maximise the likelihood are given by

[ X,
E_ m,,
o , a<x, (5.14)
X
1
% ny
X=X,
ma=+
Xl
z my, a-1
x=a+t] [1-Z 7], x,<a<x
= ! 5.15)
X, x-1 a=a, G.
[z mg, s, ]
| x=at] a=a

The expression for a<<x_, where there is no censoring, follows from a straightforward binomial
argument. The expression for a>x_ follows from a conditional probability argument. Note that
(5.15) estimates the probability of marrying between ages a and a+1 as the product of two
quantities: (1) the number married between ages a and a+1 divided by the number single at
exact age a, which estimates the conditional probability of marrying between ages a and a+1
conditional on being single at age a, and (2) a previously obtained estimate of the probability of
being single at exact age a.

The estimates given at (5.14)-(5.15) are identical to those that would be obtained by construct-

ing a life table where X,

z Max

x=max(x,,at1)

represents the number married between exact ages a and a+l, and s represents the number
censored at exact age x. We refer to these estimates as the pooled (or li)f(e table) estimates of the
first marriage frequencies. Pooled estimates for the cohorts aged 25 to 29 in the Colombian
survey are shown in Table 5.3 (Column 7).

The likelihood ratio and Pearson chi-squared statistics for testing the hypothesis that all cohorts
in the group have followed the same nuptiality schedule are given by
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X, X 5./
xt =23 {= maxlog(ff_l)ﬂxlogﬁ_x__)_(__)}, (5.16)
1 X=X, a=ag ma x-1
l-:Z, Ta
a=a,
and
1 =
X X- _ (ﬁ_ A2 7 )2
X*=2 n {E (Pax-ma)?, "X a=a .17
P ox=x, a=a, = S } )
a 1-Z g,
a=a

and are distributed in large samples as chi-squared statistics with degrees of freedom
x,-1
v=2 (x-a,), (5.18)
X=X,

which is the number of independent cells, x-a, for each cohort aged x, less the number of para-
meters in the homogeneous mode] which is x -a.

For the cohort aged 25 to 29 we obtain

x12 = 67.3 p value = .302
x;= 61.3 p value = .501
v= 62 (5.19)

indicating, as we would have expected from the good fit found earlier, that the cohorts are
fairly homogeneous.

Results of the likelihood ratio test for other cohorts are given in Table 5.2.

Since Coale’s model (5.3) is a restricted case of the homogeneous model (5.12), we can obtain
a chi-square test comparing the two models by direct subtraction of the goodness of fit chi-
squares and the degrees of freedom corresponding to each model.

For the cohort aged 25 to 29 we obtain from (5.11) and (5.19)

xlz = 13.1 p value = .598
x;= 13.6 p value = .558
v= 14 (5.20)

The likelihood ratio chi-square statistic is the same that would be obtained by direct use of the
ratio 'n_a/ﬂa.

5.5 Fitting and Forecasting

In fitting a model schedule to a cohort still undergoing the marriage process we obtain estimates
of u and ¢ which best reproduce the experience of the cohort up to the date of the interview.
The goodness of fit criteria considered so far pertain only to this incomplete experience.

As noted earlier, a model that fits the experience of a cohort to date well will not necessarily
forecast its future behaviour accurately. Yet one of the purposes of fitting the model may be to
estimate the mean age at marriage, which involves an element of forecasting for all but the
oldest cohorts.
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TABLE 5.4: Estimates of the mean age at first marriage and the proportion ever marrying
obtained by artificially censoring the available data,

Current Age of Cohort
35-39 40-44
Cohort Last
Observed When Estimate SE Estimates  p Estimates SE Estimates  p
Aged x —x,
a @ G @ 6 © O © © @ a
M c seu sec i c seu  sec

20-24 20.16 .875 .507 051 .256  22.58 1.090 .929 113 .993
25-29 20.00 .852 315 .023 .727  21.87 981 554 041 .922
30-34 20.13 864 256 .017 592 2140 935 365 .019 .826
35-39 2044 885 255 .014 233 21.17 917 298 015 .870
40—-44 21.22 919 .284 013 .926

If the model is true, of course, and there are no errors in the data, the procedures described
herein will produce estimates of the parameters which will be correct within the limits of sampl-
ing variability. In fitting the model to data generated from the standard with p=21.36 and
0=6.58 we have been able to recover the correct parameter values by truncating or censoring
the data as early as ages 15 to 19.

It is therefore interesting to examine whether we would have obtained the same estimates of
the parameters for the cohort now aged for example 40-44, if we had observed them at an
earlier point in time. To accomplish this task we assume that women now aged, for example
40-44, who reported an age at marriage of 20 would have reported the same age at marriage 5,
10 or 15 years ago. In short, we must assume that dates (both of birth and of marriage) are
reported correctly. We then re-estimate the parameters for a cohort by utilizing data which
would have been gathered 5, 10, 15, .. ., years earlier. Results for two cohorts are presented in
Table 5.4.

Consider first the cohort aged 35-39 at the time of the survey. Estimates of the mean age at
marriage and proportion ever-marrying are 20.44 and .885 respectively, If the same women had
been interviewed five years earlier, when they were aged 30-34, their reports would have
produced estimates of u and c¢ of 20.13 and .864 respectively. Even 15 years earlier their
experience to date would have produced quite similar estimates of 20.16 and .875. Figure
5.1 shows the pooled estimates for this cohort, as well as the fitted schedules based on the
experience of the cohort up to date, and based on the experience censored at ages 20-24.

We conclude that in this case, estimates which would have been produced earlier are remark-
ably similar to those actually resulting from the survey. The biggest difference arises between
estimates based on the current data and those which would have resulted had the cohort been
interviewed 10 years earlier, when aged 25-29; the mean would have been underestimated by
44 and the proportion ever-marrying underestimated by .033. The implication of this finding is
that while the model would have predicted well in this example, the actual prediction error
is higher than the estimated standard errors of the estimates., Hence, one must expect rather
less precision in the estimates of the eventual mean age at first marriage and proportion ever-
marrying for young cohorts than would be implied by the estimated standard errors.

The cohort aged 40-44 reveals a more dismal picture. Estimates of the parameters based on the
current data are almost identical to those which would have been obtained five years earlier.
After this point however, estimates of both the mean age at marriage and the proportion ever-
marrying rise monotonically the further back in time one assumes the survey was taken, The
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FIGURE 5.1: Pooled estimates of proportions marrying at each age for the cohort aged 35-39
and fitted schedules based on the experience up to ages 20—24 and up to ages 35-39; all-

women sample,
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FIGURE 5.2: Pooled estimates of proportions marrying at each age for the cohort aged 40—44
and fitted schedules based on the experience up to ages 20—24 and up to ages 40—44; all-
women sample.
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estimates based on data which would have been collected 20 years earlier are clearly incon-
sistent with the current estimates; the mean is over-estimated by nearly 1.4 years and the
proportion ever-marrying over-estimated by .171. We conclude that in some cases the model
may not predict well.

It must be emphasized that if the data do conform to the model, artificial censoring or trun-
cation will not affect the estimates of the parameters, The problem with the data for the
cohort aged 40-44 at the time of the survey (and to a much lesser extent with the data for
the cohort aged 35-39) is that they simply do not conform well to the model. This lack of
conformity is evident in a plot of the pooled estimates for the cohort aged 40-44, shown in
Figure 5.2, The data are clearly irregular and do not form a smooth curve with a single peak.
There are big positive outliers at ages 18, 21, 25 and 27 and big negative outliers at ages 23,
26 and 28, When the experience of the cohort up to ages 40-44 is used the fitted schedule is
anchored at the upper tail by a large number of points which conform to the model. As one
successively discards the points at ages 35-39, 30-34 and 25-29, the outliers acquire more
prominence and the best fitting curve (in a maximum likelihood sense) moves steadily to the
right, thereby implying a larger mean, as clearly seen from Figure 5.2,

The lesson to be learned is straightforward. If one is fitting the model to a series of points
which are highly erratic (due to random or non-random variations in age reporting such as
caused for example by digit preference) especially in the central age groups, then the predictive
power of the model is likely to be small indeed. One can best use the model in such a case asa
diagnostic or smoothing device. If, on the other hand, the data form a series which is smooth
and single-peaked, then one can place more faith in the predictive power of the model. Never-
theless, period effects can modify the predictive power even when the model to date fits well.
The model cannot foresee war, famine, social change or revolution; its predictions are limited
by the assumption that past behaviour reveals something about future behaviour,
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6. ESTIMATION FROM UNGROUPED DATA

6.1 The Data

In Sections 3 and 5, dealing with estimation using individual data from ever-married or all-
women samples, we have used age at marriage and age at interview tabulated in completed
years. We refer to this type of data as grouped data,

In WFS individual surveys these ages are calculated from three dates — namely date of respond-
ent’s birth, date of first marriage and date of interview — all available or imputed in month/
year form. Thus the ages under reference are ‘known’ to the nearest month and may be taken
to represent exact years. We refer to this type of data as ungrouped data.

We now consider fitting the model using ungrouped data or exact ages, and discuss estimation
and goodness of fit procedures appropriate for ever-married and all-women samples.

6.2 Estimation from All-women Samples

Consider first a sample or cohort of n respondents, of whom m are ever-married. For con-
venience let i=1,...,m index those ever-married and let i=m+1,...,n index those single. For the
i-th respondent let

age at interview in exact years (i=1,...,n)

]

X

]

a; = age at marriage in exact years (i=1,...,m)
Note that in an all-women sample the distribution of age at marriage is censored by age at the
interview (a;<x; for i<m but a, is undefined for >m).

Under Coale’s model nuptiality schedule the probability of marrying between exact ages a
and atda is f(a)da, where f(a) is the frequency of first marriages defined at (1.1). Hence, the
contribution to the likelihood of a women married at exact age a; is simply

f(ay), i=1,...,m (6.1)
On the other hand, the probability of remaining single at exact age x is 1-F(x), where F(x)

denotes the cumulative frequency of first marriages defined at (1.6). Hence, the contribution to
the likelihood of a women single at exact age x; is simply

1-F(xy), i=m+1,..n (6.2)
The logarithm of the likelihood function under the model is then
m n
logL = 2 log[f(ap] +2 log[1-F(x;)] (6.3)
i=1 i=m+1

This function depends on the data {a;,x;} and the parameters , ¢ and ¢ through f and F, and
may be optimized numerically using the procedures mentioned in Section 8.

For the cohort aged 25 to 29 completed years in the Colombian individual survey we obtain
p=21.17,  6=5.97 and &=.904 (6.4)
which are similar to the estimates obtained from grouped data at (5.5).

Estimates of the standard errors of the estimates, obtained from a numerical approximation to
the information matrix, are

A A A A AA
s.e.u=.332, 5.6.0=276 and s.e.c.=.023 (6.5)

which are also comparable to those obtained using grouped data at (5.6).
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TABLE 6.1: Estimates of the parameters of the model fitted to ungrouped marriage data from
the Colombia individual survey (1976). All-women sample.

Cohort Estimates Standard Errots Goodness of Fit
M @ @ @ ©® © ®)
X, =X, M o [¢ s.e.l s.e.0 s.e.c. D
20-24 21.57 6.01 895 480 363 .050 .024
25-29 21.17 5.97 904 332 276 023 : 023
30-34 20.61 5.06 917 253 211 .014 .020
35-39 20.45 542 .889 244 212 .014 041
4044 21.15 575 919 269 233 .013 033
45-49 21.69 6.40 913 333 273 014 .042

Our experience indicates that estimates of standard errors obtained from ungrouped data are
generally more stable and reliable than those obtained from grouped data.

Estimates of all three parameters and their standard errors for the six 5-year cohorts in the
Colombian individual survey are given in Table 6.1.

Let F(a) depote the fitted nuptiality schedule obtained by evaluating the function F(a) at the
m.l.e’s /J., 6 and & Note that F(a) is a maximum likelihood estimator of the cumulative fre-
quency of first marriages under the assumption that the latter has the parametric form intro-
duced in Section 1.2.

6.3 The Kaplan-Meier Estimate

We now consider a procedure for assessing the goodness of fit of the model which is based on
a comparison of the fitted nuptiality schedule with a non-parametric estimate of the cumulative
frequency of first marriages, which maximizes the likelihood of the data over the class of all
distribution functions.

The non-parametric estimate in question, which will be denoted ﬁ(a), is the product-limit
estimate of a distribution function from censored data developed by Kaplan and Meier (1958),
and represents an extension to continuous data of basic life table concepts.

Let a(1)<a(2)< <a(k) denote the distinct ages at marriage observed in the sample, with
k<n and define a(g)=-° and a(k+1)=°. Let m; denote the number of women married at exact
age a(j), and let 1, denote the number of smgle women at exact age x where a(l)\x<a(1 1)
fori=1,... k.

In life table terminology m; represents the number of “deaths™ at exact age a¢;y, and 1; repre-
sents the number of “losses™ or observations censored between exact ages a(l) and a(l+1)
including losses at a(j) but not at a (i+1).
For each age a(j) define the risk set

k

R,=12 (mj+1 j)

j=i
This set comprises all women remaining single just before age a(j) and thus “at risk” of first
marrying at exact age a(j).

The product-limit estimate of the probability of marrying by exact age a() is then

48



[y

Flagy] =1 -0 [1- 4], 6.7)
® -

Note that m; /RJ estimates the probability of marrying at exact age a(]g conditional on being
single just before that age; the quantity in brackets estimates the probability of remaining single
at age a(j); the product from j=1 to i estimates the probability of remaining single from ages
a(1) to a(j); and thus Fla(j)] estimates the probability of marrying by exact age a(j)-

The estimate may be extended to any age a<x(p), the largest censoring age, and other than the
sample points a(j), by setting F[a(0)]=0 and

F(a) = F[a(i)] for a(i)< a < 3(i+1) (6.8)

Details of the derivation of F using a maximum likelihood argument may be found in Kaplan
and Meier (1958, p.475).

In the grouped data case the estimate (6.7) turns out to be the same as the pooled estimate
introduced in Section 5.4, which is also based on a life table argument.

Note that we have two estimates of the cumulative frequency of first marriages, an estimate
F(a) from the class of all distribution functions, and an estimate F(a) from the subclass of
functions having the parametric form proposed by Coale and McNeil (1972).

Since the two estimates are m..e.’s one might expect these developments to lead to a likeli-
hood ratio test of the goodness of fit of the model. Unfortunately such is not the case, because
the ratio of the likelihoods does not give a fair comparison between a discrete function such as
F(a) — which assigns positive probability to the actual observed values and zero probability to
any other value — and a continuous function such as F(a) — which assigns positive probability
density to any possible value whether observed or not.

Since the two estimates are consistent, however, it is possible to assess the goodness of fit of
the model by a direct comparison of F(a) and F(a) for all ages a. In particular, a summary
measure of the goodness of fit of the model is given by the largest difference between the two
estimates.

D = supremum | ﬁ(a)-T?(a) I (6.9)
a(1)<a<a(k)

It can be shown that the maximum must occur at one of the sample points, so that
D = max maxl%a--l?w ,lga--Fa- , 6.10
ax. [max{[F[a;)] Flagll , IFla)]-Flagpy] 11 (6.10)

The statistic D is a censored-sample analog of Kolmogorov-Smirnov’s goodness of fit statistic.
The distribution of D is known for complete samples, but its properties under censoring have —
to our knowledge — not been established. Thus D may be used as a descriptive measure of good-
ness of fit but not as a formal test.

Figure 6.1 shows the parametric and non-parametric estimates;“(a) and F(a) of the cumulative
frequencies of first marriage for the cohort age 25 to 29 in the Colombian survey.

The closeness of the two curves indicates a good fit of Coale’s model nuptiality schedule to the
data. The largest distance between the curves is D=.023. There are two problems in interpreting
this statistic, one of a general nature and one specific to WFS data. First, it is affected by the
proportion who ever marry; if the cumulative curve reached only half the level shown in Figure
6.1, then ceteris paribus, D would be only half as big. The second problem, specific to WFS
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FIGURE 6.1: Kaplan-Meier [F(a)] and fitted [l?(a)] proportions ever-married among women
aged 2529 at the time of the survey; all-women sample.
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data, is that the ages at marriage are not really distinct since they are all expressed in twelfths
of a year. Hence heaping on these fractions is inevitable. Since F(a) is continuous and F(a) is a
step function more heaping will invariably increase D. Thus, both the plot and the statistic
tend to make the goodness of fit appear worse than it would be if exact ages were used.

6.4 Estimation from Ever-married Samples
We now adapt these procedures to the case of an ever-married sample.
For the i-th respondent in a sample or cohort of m ever-married respondents let

X; = age at interview in exact years

a; = age at marriage in exact years

Note that in a sample of ever-married women the distribution of age at marriage is truncated
by age at the interview (aj<xj). We therefore argue in terms of conditional probabilities of
marriage.

The probability of marrying between exact ages a and a+da conditonal on marrying by exact
age x, under Coale’s model nuptiality schedule, is given by g(alx)da where
glalx) = 8@) | (6.11)
G(x)

where g(a) and G(x) denote the probability density and the cumulative distribution functions
of age at marriage, defined at (1.2) and (1.8).

The logarithm of the likelihood function under the model is then

m
logl. = = {log[g(a)] log[GGxp1}. (6.12)
1:
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TABLE 6.2: Estimates of the parameters of the model fitted to ungrouped marriage data from
the Colombia individual survey (1976). Ever-married women sample.

Cohort Estimates Standard Errors Goodness of Fit
(1) @ ®) (@), ) ©)
X, —X, M ) s.e.t s.e.0 D
2024 21.51 5.97 517 395 .053
25-29 21.10 591 327 274 .037
30-34 20.60 5.05 245 207 .028
35-39 2045 5.42 253 216 .038
40—-44 21.15 5.74 282 232 .037
45—-49 21.69 6.40 342 277 .047

This function depends on the data {aj,xi} and the parameters ¢ and o through g and G, and may
be optimized numerically as noted in Section 8.

For the cohorts aged 25 to 29 completed years in the Colombian individual survey, we have
#=21.10 and =591, (6.13)

which are fairly similar to those obtained from grouped data.

Estimates of the standard errors of ﬁ and o for this cohort, obtained from a numerical approxi-
mation to the information matrix, are

sle.i=.327 and se.0=.274, (6.14)

which are comparable to those obtained using grouped data.

Estimates of the parameters, as well as associated standard errors, for six 5-year cohorts in the
Colombian individual survey are given in Table 6.2,

For each cohort the maximum likelihood estimate of the conditional probability of marrying
by exact age a given marriage by exact age x>>a is given by

G(ab)=Ca)/Gx), 6.15)

A A
where G denotes the cumulative distribution function G evaluated at the m.l.e.s ¢ and o.

6.5 A Product-limit Estimate for Truncated Data

In order to assess the goodness of fit of the model to a sample of ever-married women we now
develop a non-parametric estimate of the cumulative distribution function from a truncated
sample, which maximizes the likelihood of the data over the class of all distribution functions.

The estimate, which will be denoted G(alx), is analogous to the Kaplan-Meier product-limit
estimate for censored samples, and hence will be referred to as the product-limit estimate for
truncated samples. We first introduce the notation and the estimate and then proceed to its
derivation.

Let a(1)<a(2)<...<a(k) denote the distinct ages at marriage in the sample and define a(gy=-
and a(k+1)==. Let mj denote the number of women married at exact age a() and let tj denote
the number of women interviewed at exact age x for a(jy<x<a(j+1).

Here tj represents the number of observations truncated at ages between a(j) and a(j+1), includ-
ing those truncated at a(j) but not at a(j+1). Note that since all women in the sample are ever-
married and interviewed
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k k .
Eml = Eti =n (6.16)
i=1 i=1
Let us now define the quantity
i

which can be seen to be the number of women married at age a(j) or earlier and interviewed at
age a(j+1) or later.
Then the product-limit estimate of the probability of marrying by age a(j) conditional on
marrying by age X(m), the largest observed age at interview in the sample, is

_ k1

Gl Pm)! =L Mormit1 (6.18)

Jo

The ratio Mj/(Mj+mj+1) is the ratio of the number of women married by age a(j) and inter-

viewed at age a(j+1) or later, to the number of women married by age a(j+1) and interviewed
at age a(j+1) or later, and thus estimates the probability of marrying by age a(j) conditional on

marrying by age a(j+1).
The product of these probabilities from j=i to k-1 gives an estimate of the probability of marry-

ing by age a(j) conditional on marrying by age a(k). Since there are no marriages in the sample
between ages a(k) and X(m), these probabilities may also be considered conditional on marrying

by age X(m).

The estimate may be extended to any age a<x(m) other than the sample points a(j) by letting
Gla(o)l%(m))=0
and

G(alx(m))=G(a(l)|x(m)) for a(i)<a<a(i+1) (619)
We now show that G is a maximum likelihood estimator of the conditional distribution funct-
ion in the class of all distribution functions.

Let G, ,(a) denote the probability of marrying by exact age a conditional on marrying by exact
-age X(m)» considered as an arbitrary function to be determined so as to maximize the likeli-
hood.

For a sample of m women, where the ith woman married at age aj and was interviewed at age
X, [2j<xj<x(m)] , the likelihood is given by

N e )
i=1 Gy &) (6.20)

where G(2j-0) denotes the value of Gyy(a) immediately at the left of aj.

Let a(j), mj and tj be as defined earlier, and let x(jj) for j=1,...,tj denote the exact ages at inter-
view of the tj women whose experience was truncated between a(j) and a(j+1), including those
truncated at a(j) but not at agj+1).

The likelihood function may then be written as

k
L=1
i=

o ti A1
1 Gyl Gpplagyol} {1 Gulxgyl} (6:21)
= J:
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Note that (6.21) is just a restatement of (6.20) since

m k _ m
n {G,@)C,0 =1 {6, [2(i)] -G lagyy 01}
i:l 1=1

and

m i k ti -1

I G =1 I Gy lxgy]

=1 =1 =1

To maximize the likelihood we would like to make G [a(j)] as large as possible, and Gy
[ai)0] and Gm[x(jj)] as small as possible, under the restriction that G is non-decreasing,

Since a(j)<x(ij)<a(i+1)-0, we require for monotonicity
G [2(i)! <Opn (X)) <O 2341y 01 (6.22)

Subject to this constraint, the first term will be as large as possible and the other two as small as
possible when they are all equal. Denoting the common value as P; we have

G [3()l =G Ix(ij)] =G laG+1)01=h; (6.23)
with Po=0 and Py=1.

Note that Pj is the probability of marrying by exact age a(j) conditional on marrying by exact
age a(k) Or X(m), as there are no marriages after age a(k).
The likelihood function (6.21) may then be written as

k

m. -t.
L=101 [pP,] '[p] ! (6.24)
i=1
Let us now write
Pi .
p; = ,1=1,... k-1 (6.25)
Pit1

with po=0 and pk=1.

Note that pj is the probability of marrying by exact age a(j) conditional on marrying by exact
age a(i+1).

We can then write

Pp=1 o p (6.26)

~

and Pl'Pi_l = l:I‘ p](l"pl_l)

=1

[

The likelihood function (6.24) now becomes

k  k m K N
L=1 {n  pp} "{m  p}" (6.27)
=1 j=1 =1
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Collecting powers of pj we obtain

i

E (mj-tj)
J_l mi
L=1 Py (I'Pi_l)
i=1
The log-likelihood function is then
k i
logL = 12—1 {j§1 (mj-t)log pytmjlog(1-p; 1)}

Differentiating with respect to pj for i=1,... k gives

i
Z  (mt)
dlogL _ j=1 ) Mitl
oP; no Iy
and setting the derivative to zero gives the m.l.e.
~
p; = M ,i=1,,k1
Mytmyg

where M is as defined at (6.17).

(6.28)

(6.29)

(6.30)

(6.31)

FIGURE 6.2: Product-limit [(_‘:(a)] and fitted [a(a)] proportions ever-married among women

married by age 29. 167, ever-married women sample.

1.00

90 F

.80

.70

.60 F

.50

A0 F

Proportions ever-married

30F

Legend R
— — - fitted {G(a))]

product-limit {G(a)]

54




By the invariance property of m.l.e.’s and (6.26) we then obtain

k1 __ML__, i=1,...k-1 (6.32)
p = I M.+m;,
=1 i

which in view of (6.23) is also the m.le. of Gm[a(i)]‘ This step completes the derivation.

In the case of grouped data the productlimit estimate just developed reduces to the pooled
estimate introduced in Section 3.4,

In order to assess the goodness of fit of the model to data truncated at age X(m) we can now
compare the parametric estimate G(alx(m)) of Section 6.4 with the non-parametric estimate
G(alx(m)), for all ages a<x(m).

A summary measure of the goodness of fit of the model is given by the statistic

D=max [max {| G[a(i)lx(m)] -E}[a(i)lx(m)] [, | G[a(i)lx(m)] G [a(i-l) [x(m)|}] ,
(6.33)
which is a truncated-sample analog of the Kolmogorov-Smirnov statistic.

Figure 6.2 shows the two estimates G and G for the cohort aged 25-29 completed years in the
Colombian individual survey. As the largest observed age at marriage is 29.167 both curves
represent cumulative probabilities of marriage conditional on marrying by exact age 29.167.

The closeness of the two curves indicates a fairly good fit of Coale’s model nuptiality schedule
to the data. The largest difference between the two curves is D=.037. The same reservations
stated earlier about the tendency of D to reflect an understatement of the goodness of fit since
ages at marriage are confined to twelfths of a year apply in the ever-married sample as well.
However, the statistic is obviously not affected by the proportion who can marry, since the
sample is of ever-married women only.
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7. FITTING THE MODEL TO FIRST BIRTH DATA

Recall that the standard probability density function which forms the basis of the model
nuptiality schedule very closely approximates the convolution of a normal and three exponent-
ials, Suppose that the risk of pregnancy leading to a live first birth were constant over time
and across women. Then, the waiting time from initiation of intercourse to first birth would be
distributed exponentially. If one regards marriage as the entry into the risk of exposure to
pregnancy, then the above discussion would imply that a model first birth schedule could be
constructed as the convolution of a normal and four exponentially distributed delays, or
equivalently as the convolution of the age at first marriage and an exponential delay till the
first birth. However, since Coale and McNeil found that a convolution of a normal and four
exponential delays could be very closely approximated by a convolution of a normal and
only three exponential delays, it follows that the marriage model should itself replicate first
birth schedules adequately.

An initial analysis conducted by Trussell (Trussell, Menken and Coale, 1979) confirmed both
that the marriage model fits first birth (and even second and third births) schedules well, and
that the four parameter model (i.e. the marriage model and another parameter for the exponen-
tial delay) fits the data no better than the three parameter model. This analysis showed that
period first birth schedules were replicated more closely than cohort schedules (at least for
American data), because period effects appeared to be considerable. In recent extensions of
this preliminary investigation in a Ph.D. Thesis, David Bloom (1980) has confirmed that the
model does fit well when applied to data from a variety of countries and that period effects are
indeed important.

The model has been fitted to the first birth data from the Colombia individual survey, and the
parameter estimates are presented in Tables 7.1 and 7.2. In Table 7.1, the results for data on
women who ever had a first birth are presented, while Table 7.2 extends the analysis by pre-
senting estimates of the proportion ever having a first birth as well. Perusal of these tables
indicates that the model does not fit the first birth data as well as the marriage data. This result
could be due to the fact that first births (if we extrapolate from experience in other countries)
appear to display more period effects than marriages, or could be attributed to errors in the
dating of the first birth, or could be a consequence of genuine lack of fit of the model. Examin-
ation of the pooled estimates for each 5-year cohort reveals that the first birth schedules are
very irregular, thus tending to lend heavier support to the first two explanations. Nevertheless,
we are encouraged by these results, since poor overall fits are usually accompanied by a finding
that the cohorts (20-24, 25-29, 35-39) are not homogeneous.

TABLE 7.1: Estimates of the parameters of the model fitted to grouped first birth data from
the Colombia individual survey (1976). Women who had a first birth.

Ages Estimates Standard Errors Goodness of Fit Homogeneity of Cohorts
Hm @ @ @ G ® O ® © 0 an
X,—X, u o sefl  sed X! v P ' v P

2024 24.04 6.69 904 615 768 48  .005 58.1 38  .019
25-29 2240 6.00 375 308 119.5 73 .000 94.1 58 .002
30-34  21.59 4.96 247 211 104.6 93  .194 82.0 74 245
35-39 21.70 5.58 263 226 1594 122 013 134.2 98 .009
40-44 2202 5.60 271 220 1599 153 .335 116.1 122 .633
45-49 2251 6.51 321 260 168.4 168 476 112.0 136 934
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TABLE 7.2: Estimates of paramters of the model fitted to grouped first birth data from the
Colombia individual survey (1976). All-women sample.

Homogeneity of

Ages Estimates Standard Exrors Goodness of Fit

Cohorts

1 (2) @ @ 6 6 O & © aq an [az 43
X,—X, M o ¢ sel seo sec xj v p xi v p
2024 2349 636 106 .655 468 .090 81.2 52 .006 59.6 42 .038
25-29 2243 6.02 925 373 307 .029 121.6 77 .001 96.2 62 .003
30-34 21.62 4.98 936 244 209 014 1099 97 .176 87.2 78 224
35-39 31.69 5.57 899 261 221 013 1614 127 .021 136.1 102 .013
40—-44 22.02 5.61 909 272 220 014 1629 167 .358 119.6 126 .644
45-49 2251 6.15 924 319 263 014 1737 182 .657 1173 146 .96l

TABLE 7.3: Estimates of the average delay between first marriage and first birth in Colombia.

Cohort ¢ Not [ Calculated
X, —X, Estimated*® Estimated t Directly
¢} 2 3) 4)

2024 2.53 1.87 1.18
25-29 1.18 1.16 1.10
30-—-34 0.07 0.98 0.86
35-39 1.27 1.25 1.08
40—44 0.81 0.80 0.86
4549 0.82 0.83 0.69

*Based on Tables 3.3 and 7.1.
tBased on Tables 4.1 and 7.2.

In Table 7.3 we present the implied average delay between first marriage and first birth —
obtained by subtracting the estimated mean age at first birth from the estimated mean age at
first marriage. For these results to be meaningfully interpretable, it must be the case that
marriage is a true signal of initiation of exposure to the risk of childbearing. With the exception
of the cohort 35-39 (which was already identified as an outlier), these results seem to indicate
a lengthening over time of the delay between first marriage and first birth, a finding which is
internally consistent with the raw data (shown in the fourth column of Table 7.3) and consist-
ent with the observed fall in fertility.

Comparison with the raw data shows clearly that they are affected by mis-statement of date of
birth of respondent or date of the respondent’s first birth; the low values at ages 30-34 and 45-
49 are clearly inconsistent with the other mean intervals. If there has been no change in age at
marriage or age at first birth one would expect to see a declining trend (steeper at first) in the
mean intervals calculated from the raw data due to the truncated nature of the data; women at
older ages can, ceteris paribus, have longer intervals from marriage to first birth. Undoubtedly,
this truncation partially explains why the estimate of the interval based on the model (which
corrects for truncation) is higher, Although we could not recommend fitting the model to both
sets of data in order to compute the mean dealy, we feel that the estimates based on this pro-
cedure are quite reasonable for Colombia.
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8. COMPUTATIONAL CONSIDERATIONS

8.1 Optimization Procedures

Maximization of the log-likelihood function requires numerical techniques, since no analytical
expressions are available for the m.le.’s. We employed two algorithms, the Davidon-Fletcher-
Powell (DFP) method (Powell, 1971), and a quadratic hill climbing algorithm (GRADX)
developed by Goldfeld and Quandt (1972).

The first algorithm, DFP (Powell, 1971), converged in almost every case, the only exceptions
being for the age group 15-19 when the option to fix ¢ was chosen. This algorithm is relatively
fast and always converged to the same parameter estimates (when it converged). Furthermore,
the estimates of the standard errors obtained from the inverse of the negative of the matrix of
second partial derivatives (the inverse of the information matrix) seemed to be relatively stable.
This finding was encouraging since DFP does not calculate second derivatives directly but builds
up a matrix, initially the identity matrix, which eventually converges to the inverse of the
information matrix if enough iterations occur. Bad estimates of the standard errors will result if
the starting values are too close to the m.lLe., but one experience showed that starting values
that differed by as little as .05 from the m..e. still gave very reasonable estimates of their
standard errors.

The second algorithm GRADX (Goldfeld and Quandt, 1972) was used whenever DFP (rarely)
failed. GRADX used alone proved to fail more often than DFP, though fortunately we never
found a case where both failed to converge. GRADX is (about 20%) faster than DFP, but
estimates of the standard errors proved to be unstable. GRADX employs directly the matrix
of second derivatives, so estimates of standard errors are obtained even when the starting
values are the m.le.’s.

We found that the likelihood function, though it appears in many cases to be flat near the
maximum, was nevertheless easy to maximize. In no case did at least one algorithm fail to con-
verge, even when the starting values were far from the m.l.e.’s.

The choice of starting values did not prove critical. In our work we used as default starting
values p=20, 0=6 and c¢=.9. When fitting the model to the six 5-year cohorts in Colombia we
used the default starting values for the cohort 20-24, and the final estimates of the previous
cohort as starting values for each of the cohorts 25-29 to 45-49,

8.2 Evaluation of the Incomplete Gamma Function
The main problem we had in computing the function was discovering a way to compute the
cumulative distribution function G(a). Recall that

G () = 11D ap1) = 11(w,p) (8.1)
where w=e'>‘(z'0), p=a/\-1, z is the standardized aged (x-u)/g, and I(w,p) is the incomplete
gamma function.

We experimented with several methods for evaluating the incomplete gamma function. We
finally settled on an extremely fast version which involves creating a table of the values of
G_(z) at regular intervals of z (of .005) and interpolating quadratically for values of z in be-
tween tabulated values. This procedure was modified slightly for very small or large values of z
as will be explained below.

To calculate I(w,p) we employed the well known series first derived by Pearson (1922):

Iowp) = oW ; wp+1+j _ e-wwp+1 w w? |
=0 Tpwd)  Tew (®+2)  (p*2)(p+3)
= (s, ts, ts, +...) (8.2
1 72 3
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In practice we considered the series to have converged when ¢.5;<10"'?, One problem with this
series expansion is that the number of terms required for convergence becomes very large as z
becomes small (w becomes large), as the following table shows:

24
54

-2.0
35

-1.5
21

-1.0
15

0.5
11

0
8

5
7

1.0
6

1.5
5

2
4

2.5
4

3
4
This consideration is not so important if one wants to evaluate a table only once and inter-

polate thereafter, but it is overwhelming if one wanted to calculate I(w,p) directly for each
value of z.

3.5
3

z
No. of terms

The main problem for very small values of z, say as z becomes more negative than -2.37, is that
the individual members (the s;) of the series (both numerators and denominators and their
ratios) become so huge and the constant c(=e-WwP*1/T(p+2)) becomes so small that all precis-
ion is lost from the computed answer.

Here we employed another approximation to the cumulative gamma function I(w,p), due to
Gray, Thompson and McWilliams (1969),

wp+1e-w ) p )
oD ‘ (W_p)2+2wl [(w-p) (8.3)

Go (Z) = 1-I(W,p) =

We found that the two approximations (8.2) and (8.3) could be joined when z=2.1. For very
large values of z, say z above 1.9 we found that the series (8.2) could be used directly, as only
4 terms are needed for convergence. Hence, G (z) was calculated by interpolation for values of
z such that -2.1 <z<1.9; the simple formula was used for z<-2.1; and the first four terms in the
series were employed for z>1.9. It should be noted that the same parameter estimates were
obtained in extensive trials regardless of whether the expensive or cheap method of calculating
G,(2) was used.

8.3 A Computer Program

All estimates in this paper were computed using the computer package NUPTIAL, which was
written by the present authors. The numerical optimization routines are contained in a separate
package developed by S.M. Goldfeld and R.E. Quandt. This package, which contains not only the
algorithms GRADX and DFP but also several others, is available from the Econometric Re-
search Program, Department of Economics, Princeton University, Princeton, N.J. 08544, USA.

The package NUPTIAL contains several options from which the user may choose, among which
are

(a) maximize the likelihood function or minimize the sum of squared differences between
the observed and fitted schedules,

(b) discard individual data on age at marriage for women marrying at their current age,
(c) fix the value of ¢, and estimate only u and o,

(d) use household data, individual data, or both, or an all-women sample,

(e) print data, observed and fitted values, and steps in the optimization,

(f) plot observed and fitted values.

This package, and the manual which accompanies it, are available from the World Fertility
Survey, 35-37 Grosvenor Gardens, London, SW1.
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GLOSSARY OF SYMBOLS

The following is a summary of the notation used in the paper. Symbols used only in a particular
section are not included.

Data

38 x

= w»
><Fg><><

o
2
5

pax

Model

f(a)
F(a)
g(a)
G(a)
gs:G

C

a_k
#?U
z

Talx

??x

X

Section Reference

age at interview 1.1/2.1/3.1/5.1
age at marriage 1.1/2.1/3.1/5.1
number of women married at age a and now aged x 3.1/5.1
number of ever-married women aged x 2.1/3.1/5.1
number of single women aged x 2.1/5.1
total number of women aged x 2.1/5.1
proportion of ever-married women at age x 2.1
proportion of women married at age a among ever-married women aged x 3.2
proportion of women married at age a among all women aged x 52

frequency of first marriages 1.2
cumulative frequency of first marriages 1.2
probability density function (p.d.f.) of age at first marriage 1.2
cumulative distribution function (c.d.f,) of age at first marriage 1.2
Swedish standard p.d.f. and c.d.f. 1.2
standard p.d.f. and c.d.f. with mean 0 and variance 1 1.3
proportion of women in a cohort who eventually marry 1.2
parameters of the standard nuptiality schedule 1.2
mean and standard deviation of age at marriage 1.3
standardized age (x-a,)/k or (x-w)/o 1.2/1.

probability of marrying at age a conditional on marrying by age x 3.2/4.3
unconditional probability of marrying at age a for cohort aged x 5.2
probability of being ever-married by age x 2.2/4.2/4.3

Estimates and Tests

denotes maximum likelihood estimates under the model  2.2/3.2/4.2/4.3/5.2/6.2/6.4

denotes pooled or product-limit estimates 3.4/5.4/6.3/6.5
likelihood ratio chi-squared statistic 2.3/3.3/3.4/5.3/5.4
Pearson’s chi-squared statistic 2.3/3.3/3.4/5.3/5.4
degrees of freedom 2.2/3.3/3.4/5.3/5.4
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APPENDIX TABLES

TABLE 1: Number of ever-married and never-married women, by age, in the Colombia
individual survey (1976).

Age Ever-married Never-Married
(1) (2) 3 -
15 7. 318.
16 26. 280.
17 37. 227.
18 71. 230.
19 74. 153,
20 117. 145,
21 102, 84,
22 124. 99.
23 138. 81.
24 108. 53.
25 127. 57.
26 137. 42.
27 121, 31.
28 146. 35.
29 123. 23.
30 129. 19.
31 87. 14.
32 109. 16.
33 100. 12.
34 106. 7.
35 110. 21.
36 119. 13.
37 101. 15.
38 89. 10.
39 89. 12.
40 120. 17.
41 717. 10.
42 83. 4,
43 76. 5.
44 78. 6.
45 95. 8.
46 71. 9.
47 77. 6.
48 65. 1.
49 61. 5.
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TABLE 2: Age at marriage by age at interview for women in the Colombia individual survey (1976).

Age at Marriage

Age at

Inter-
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TABLE 3: Summary of estimates of the model fitted to grouped marriage data from the
Colombia National Fertility Survey (1976). Numbers in italics indicate results when all data are
included. Numbers in roman type indicate results when data on age at marriage equal to the age
at interview were omitted.

Age Sample Estimates Standard Errors pValue
M @ ® @ ®» © o0 6 O
Xo—X, 1] a c s.e.l s.e.0 s.e.c
20-24 1 21.507 5.938 640 479 121
I 21.626 6.005 .566 427 143
B 21.798 6.135 .808 524 398 .046 106
B 21.859 6.161 813 505 389 045 129
A 21.620 6.012 887 .609 459 .064 170
A 21.614 5.996 .891 501 381 053 215
25-29 1 21.224 5.980 362 .303 292
I 21.176 5.946 .353 .300 .343
B 21.396 6.112 838 376 314 .021 284
B 21.337 6.070 835 .366 307 .021 .328
A 21,272 6.017 910 .363 304 025 376
A 21.250 6.003 .906 352 .296 .024 .400
30-34 I 20.623 5.003 247 212 .058
I 20.649 5.026 245 211 042
B 20.697 5.068 .856 250 216 012 .031
B 20.721 5.089 .856 .245 211 011 .022
A 20.643 5.021 915 238 205 .014 .063
A 20.669 5.043 917 273 .232 .016 058
35-39 I 20.434 5.377 251 217 .188
I 20.510 5.448 251 218 182
B 20.441 5.383 .846 253 213 .010 .143
B 20.517 5.455 .846 254 219 .009 139
A 20.440 5.383 .885 252 217 013 233
A 20.516 5.453 .890 252 218 012 .209
40—-44 1 21.207 5.740 263 226 917
I 21.194 5.727 280 237 .929
B 21.232 5.763 .866 265 224 011 771
B 21.218 5.750 .866 271 234 011 .794
A 21.219 5,752 919 270 221 013 926
A 21.205 5.738 .919 269 224 013 L955
45-49 I 21.685 6.117 .320 266 .669
I 21.677 6.109 318 264 .683
B 21.692 6.124 851 .306 254 11 636
B 21.684 6.116 851 305 .252 .011 .651
A 21.683 6.115 .908 .035 252 015 783
A 21.675 6.108 .908 304 251 015 .849
Notes: = Individual data on ever-married women only.

Both household data an.d individual data.
All-women sample.

non

> =
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TABLE 4: Summary of estimates of the model fitted to data on numbers of women single and
ever-married by age at interview obtained from the Colombian National Fertility Survey (1976).

Age Sample Estimates Standard Errors p-Value
M @ @ @ © ©® O 6 o
X0 X, 1} g c s.e.d s.e.0 s.e.C
15-49 HH 22.439 5.284 .858 146 162 .006 011
I 21.922 4976 907 193 224 .008 816
1544 HH 22.489 5334 861 160 174 .007 011
1 21.928 4983 .907 206 234 .009 171
15-39 HH 22,437 5.281 858 167 179 .009 .071
I 21.842 4.896 901 220 241 012 .867
15-34 HH 22.612 5.442 872 230 234 .015 .126
I 22.080 5.122 921 276 297 .020 .884
15--29 HH 22.138 5.022 .830 290 272 .023 286
I 21.622 4.706 .878 367 359 .030 .930
15-24 HH 21.791 4,738 794 539 452 057 135
I 21.034 4219 .810 592 509 .068 .891
Notes: HH = Household survey.
I = Individual (all-women) survey.
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TABLE 5: G(Z), proportion ever-married at exact age Z in the standard schedule with
mean 0 and standard deviation 1.

Age Z 0 1 2 3 4 5 6 7 8 9
—~19 .0001 .0001 0001 .0001 .0001 .0000 .0000 .0000 .0000 .0000
—1.8 .0004 .0004 .0003 .0003 .0002 .0002 .0002 .0002 .0001 .00O1
-1.7 .0014 .0012 .001t .0010 .0009 .0008 .0007 .0006 .0005 .0005
-1.6 .0038 .0035 .0031 .0029 .0026 .0023 .0021 .0019 .0017 .0015
—1.5 .0088 .0082 .0075 .0070 .0064 .0059 .0054 .0050 .0045 .0042
—1.4 .0179 .0167 0157 0146 .0137 .0127 .0119 0110 .0103 .0095
—1.3 .0323 .0306 .0289 .0273 .0258 .0243 .0229 .0216 .0203 .01%90
—1.2 .0532 .0508 .0485 .0462 .0440 .0419 .0398 0379 .0359 .0341
—1.1  .0810 .0779 .0749 .0719 .0690 . .0662 .0635 .0608 .0582 .0557
—-1.0 .1155 .1118 .1081 .1045 .1009 .0974 .0940 .0907 .0874 .0841

-9 .1560 1517 .1475 1433 .1392 .1351 .1310 .1271 .1232 .1193
-8 .2014 .1966 .1920 .1873 .1827 .1782 .1736 .1692 .1647 .1604
-7 .2502 .2452 2402 2352 2303 .2254 .2205 2157 .2109 .2061
—6 3010 .2959 2908 2856 .2805 .2754 .2703 2653 2602 .2552
-5 3526 .3475 3423 3371 .3320 .3268 3216 3165 3113 .3062
—4 4038 3987 3937 3886 .3834 .3783 3732 .3681 .3629 .3578
—3 4537 4488 4438 4389 4339 4290 4240 4189 4139 .4089
—2 .5015 4968 4921 4874 4826 4779 4731 4683 4634 4586
-1 .5468 .5424 5380 .5335 .5290 .5245 5200 5154 .5108 .5062
-0 .5893 .5852 5810 .5769 .5727 .5684 .5642 .5599 .5555 .5512
.0 .5893 5852 5810 .5769 5727 .5684 .5642 5599 5555 5512
Jd  .6288 6250 6211 6173 6133 .6094 .6055 .6015 .5974 .5934
2 .6652 6617 6582 6546 .6510 .6474 .6437 .6400 6363 .6326
3 .6986 .6954 6922 6889 6856 .6823 .6789 .6756 .6721 .6687
4 7292 7262 7233 7203 7173 7143 7112 .7081 7050 .7018
S .7569 7542 7516 7489 7461 7434 7406 7378 .7349 .7321
67820 7796 7772 7748 7723 7698 7673 7647 .7621 .7595
.7 .8048 8026 .8004 .7982 7760 7937 7914 .7891 7868 .7844
.8 .8252 .8233 .8213 - 8193 .8173 .8153 .8132 8111 .8090 .8069
9 8437 8419 .8401 .8384 8365 .8347 .8329 .8310 .8291 .8272
1.0 .8602 .8587 .8571 .8555 .8538 .8522 .8505 .8488 .8471 .8454
1.1 .8751 8737 .8723 8708 .8694 .8679 .8664 8649 .8633 .8618
1.2 .8884 8872 .8859 .8846 .8833 .8820 .8806 .8793 .8779 .8765
1.3 9004 8992 .8981 .8969 .8957 .8946 .8934 .8921 .8909 .8897
14 9110 9100 .9090 9080 .9069 9058 .9048 9037 .9026 9015
1.5 9206 9197 9188 9178 9169 9159 9150 .9140 9130 .9120
1.6 9291 9283 9275 9267 9258 9250 .9241 9233 .9224 9215
1.7 9368 .9360 9353 9346 9338 .9330 .9323 9315 9307 .9299
1.8 .9436 .9429 9423 9416 9409 9403 9396 9389 .9382 9375
1.9 9497 9491 9485 9479 9473 9467 9461 9455 9448 .9442
2.0 9551 9546 .9540 9535 9530 .9524 9519 9513 9508 .9502
2.1 9599 9595 9590 .9585 9581 .9576 9571 9566 .9561 .9556
2.2 .9643 9638 9634 9630 9626 .9622 9617 9613 9608 .9604
2.3 9681 9678 9674 9670 9666 9662 9659 9655 9651 .9647
24 9716 9712 9709 9706 9702 9699 9695 9692 .9688 .9685
2.5 9746 9743 9741 9738 9735 9731 9728 9725 9722 9719
2.6 97714 9771 9769 9766 9763 9760 9758 9755 9752 .9749
2.7 9798 9796 9794 9791 9789 9786 9784 9781 9779 9776
2.8 9820 9818 9816 9814 9812 9809 .9807 9805 .9803 .9801
3. 9857 9872 9886 .9899 .9909 9919 9928 .9936 9943 .9949
4, 9954 9959 9964 9968 9971 9974 9977 9980 .9982 .9984
5. .9986 9987 .9988 9990 9991 9992 9993 9994 9994 9995
6. 9985 9996 9996 9997 9997 9997 9997 9998 9998 .9998
7. .9999 9999 9999 9999 9999 9999 9999 9999 9999 .9999
8. 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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